$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

시계열 데이터베이스에서 단일 색인을 사용한 정규화 변환 지원 서브시퀀스 매칭

A Single Index Approach for Subsequence Matching that Supports Normalization Transform in Time-Series Databases

초록

정규화 변환은 시계열 시퀀스를 구성하는 엔트리들의 전체적인 패턴을 분석하는데 매우 유용하다. 본 논문에서는 단일 색인을 사용한 정규화 변환 지원 서브시퀀스 매칭 방법을 제안한다. 기존의 정규화 변환 지원 서브시퀀스 매칭 방법은 다양한 길이의 질의 시퀀스를 지원하기 위하여 여러 개의 색인을 생성해야 하고, 이에 따라 색인 저장 공간의 오버헤드와 색인 관리의 오버헤드가 발생한다. 본 논문에서는 하나의 색인을 사용하면서도 다양한 길이의 질의 시퀀스에 대한 정규화 변환을 지원하는 효율적인 서브시퀀스 매칭 방법을 제안한다. 이를 위하여, 우선 정규화 변환을 일반화한 포함-정규화 변환(inclusion-normalization transform) 개념을 제시한다. 포함 정규화 변환이란 색인에 저장할 윈도우에 대해서 해당 윈도우를 포함하는 서브시퀀스의 평균과 표준편차로 정규화하는 것으로서, 기본적인 정규화 변환을 윈도우 및 서브시퀀스 개념을 사용하여 확장한 것이다. 다음으로, 포함-정규화 변환을 기존 서브시퀀스 매칭 연구에 적용하기 위한 이론적 근거를 정리로서 제시하고 증명한다. 그리고, 이 방안을 구현하기 위한 색인 구성 알고리즘 및 서브시퀀스 매칭 알고리즘을 각각 제시한다. 실제 주식 데이터에 대한 실험 결과, 제안한 방법은 기존 방법에 비해 최대 $2.5{\sim}2.8$배까지 성능을 향상 시킨 것으로 나타났다. 본 논문에서 제안한 정규화 변환 지원 서브시퀀스 매칭은 정규화 변환 이외의 다른 변환을 지원하는 서브시퀀스 매칭으로 일반화 될 수 있다. 따라서, 제안한 방법은 정규화 변환을 포함하는 많은 다른 종류의 변환을 지원하는 서브시퀀스 매칭에 폭넓게 적용될 수 있는 좋은 연구결과라 사료된다.

Abstract

Normalization transform is very useful for finding the overall trend of the time-series data since it enables finding sequences with similar fluctuation patterns. The previous subsequence matching method with normalization transform, however, would incur index overhead both in storage space and in update maintenance since it should build multiple indexes for supporting arbitrary length of query sequences. To solve this problem, we propose a single index approach for the normalization transformed subsequence matching that supports arbitrary length of query sequences. For the single index approach, we first provide the notion of inclusion-normalization transform by generalizing the original definition of normalization transform. The inclusion-normalization transform normalizes a window by using the mean and the standard deviation of a subsequence that includes the window. Next, we formally prove correctness of the proposed method that uses the inclusion-normalization transform for the normalization transformed subsequence matching. We then propose subsequence matching and index building algorithms to implement the proposed method. Experimental results for real stock data show that our method improves performance by up to $2.5{\sim}2.8$ times over the previous method. Our approach has an additional advantage of being generalized to support many sorts of other transforms as well as normalization transform. Therefore, we believe our work will be widely used in many sorts of transform-based subsequence matching methods.

참고문헌 (17)

  1. Agrawal, R., Faloutsos, C., and Swami, A., 'Efficient Similarity Search in Sequence Databases,' In Proc. the 4th Int'l Conf. on Foundations of Data Organization and Algorithms, Chicago, Illinois, pp.69-84, Oct., 1993 
  2. Agrawal, R., Lin, K.-I., Sawhney, H. S., and Shim, K., 'Fast Similarity Search in the Presence of Noise, Scaling, and Translation in Time-Series Databases,' In Proc. the 21st Int'l Conf. on Very Large Data Bases, Zurich, Switzerland, pp.490-501, Sept., 1995 
  3. Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger, B., 'The R*-tree: An Efficient and Robust Access Method for Points and Rectangles,' In Proc. Int'l Conf. on Management of Data, ACM SIGMOD, Atlantic City, New Jersey, pp.322-331, May, 1990 
  4. Chan, K.-P., Fu, A. W. C., and Yu, C. T., 'Haar Wavelets for Efficient Similarity Search of Time-Series: With and Without Time Warping,' IEEE Trans. on Knowledge and Data Engineering, Vol.15, No.3, pp.686-705, Jan./Feb., 2003 
  5. Chu, K. W. and Wong, M. H., 'Fast Time-Series Searching with Scaling and Shifting,' In Proc. the 15th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Philadelphia, Pennsylvania, pp.237-248, June, 1999 
  6. Faloutsos, C., Ranganathan, M., and Manolopoulos, Y., 'Fast Subsequence Matching in Time-Series Databases,' In Proc. Int'l Conf. on Management of Data, ACM SIGMOD, Minneapolis, Minnesota, pp.419-429, May, 1994 
  7. Kim, S.-W., Park, S, and Chu, W. W., 'Efficient Processing of Similarity Search Under Time Warping in Sequence Databases: An Index-based Approach,' Information Systems, Vol.29, No.5, pp.405-420, July 2004 
  8. Loh, W.-K., Kim, S-W., and Whang, K.-Y., 'Index Interpolation: A Subsequence Matching Algorithm Supporting Moving Average Transform of Arbitrary Order in Time-Series Databases,' IEICE Transactions on Information and Systems, Vol.E84-D, No.1, pp.76-86, 2000 
  9. Loh, W.-K., Kim, S.-W., and Whang, K.-Y., 'A Subsequence Matching Algorithm that Supports Normalization Transform in Time-Series Databases,' Data Mining and Knowledge Discovery, Vol.9, No.1, pp.5-28, July, 2004 
  10. Moon, Y.-S., Whang, K. Y., and Loh, W.-K., 'Duality-Based Subsequence Matching in Time-Series Databases,' In Proc. the 17th Int'l Conf. on Data Engineering (ICDE), IEEE, Heidelberg, Germany, pp.263-272, April, 2001 
  11. Moon, Y.-S., Whang, K. Y., and Han, W.-S., 'General Match: A Subsequence Matching Method in Time-Series Databases Based on Generalized Windows,' In Proc. Int'l Conf. on Management of Data, ACM SIGMOD, Madison, Wisconsin, pp.382-393, June, 2002 
  12. Oppenheim, A. V. and Schafer, R. W., Digital Signal Processing, Prentice-Hall, 1975 
  13. Park, S., Chu, W. W., Yoon, J., and Won, J., 'Similarity Search of Time-Warped Subsequences via a Suffix Tree,' Information Systems, Vol.28, No.7, pp.867-883, Oct., 2003 
  14. Rafiei, D., 'On Similarity-Based Queries for Time Series Data,' In Proc. the 15th Int'l Conf. on Data Engineering(ICDE), IEEE, Sydney, Australia, pp.410-417, Feb., 1999 
  15. Rafiei, D., and Mendelzon, A. O., 'Querying Time Series Data Based on Similarity,' IEEE Trans. on Knowledge and Data Engineering, Vol.12, No.5, pp.675-693, Sept./Oct., 2000 
  16. Wu, H., Salzberg, B., and Zhang, D., 'Online Event-driven Subsequence Matching Over Financial Data Streams,' In Proc. of Int'l Conf. on Management of Data, ACM SIGMOD, Paris, France, pp.23-34, June, 2004 
  17. Yi, B.-K., Jagadish, H. V., and Faloutsos, C., 'Efficient Retrieval of Similar Time Sequences Under Time Warping,' In Proc. the 14th Int'l Conf. on Data Engineering(ICDE), IEEE, Orlando, Florida, pp.201-208, Feb., 1998 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일