$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

적응형 세분화를 이용한 3D 메쉬의 기하데이타 압축

Adaptive Subdivision for Geometry Coding of 3D Meshes

초록

본 논문에서는 3 차원 메쉬의 기하데이타 압축을 위한 새로운 알고리즘을 소개하고자 한다. 광역좌표계에 의거한 기하데이타 압축방법은 구현이 쉽고 단순하게 양자화가 결정되지만 압축효율은 지역 화표계를 이용한 방법보다 떨어지는 단점이 있다. 반면에 지역좌표계에 기초한 방법은 광역좌표계 방법보다 압축효율은 우수하나 양자화가 사용자의 시행착오에 전적으로 의존하므로, 비체계적이고 시간이 많이 소요되는 단점이 있다. 본 논문에서는 지역좌표계영역에 적용형 세분화를 도입하여 체계적인 양자화가 가능하도록 하였다. 또한 문맥 모델링기법을 적용하여 연결데이타 압축효율도 더욱 향상시켰다. 결과적으로, 본 논문의 새로운 압축 알고리즘은 압축 효율성을 유지하면서, 동시에 체계적이고 직관적인 방법으로 왜곡율과압축률간의 균형을 제어할 수 있도록 하여 알고리즘의 신뢰성을 높였다.

Abstract

We present a new geometry coding method for 3D meshes, an adaptive subdivision. Previous localized geometry coding methods have demonstrated better compression ratios than the global approach but they are considered hard to use in practice partly due to time - consuming quantization. Our new localized scheme replaces this quantization with an adaptive subdivision of the localized range. The deeper level a user chooses, the closer to the original the mesh will be restored. We also present an improved connectivity coder upon the current leading Angle-Analyzer's by applying a context-modeling. As a result, our new coder provides reliable and intuitive controls between bit-rate and distortion without losing efficiency.

참고문헌 (17)

  1. C. Touma and C. Gotsman:Triangle Mesh Compression. Graphics Interface 98 Conference Proceedings. pp. 26-34, 1998 
  2. J. Rossignac: EdgeBreaker : Connectivity Compression for Triangle Meshes. IEEE Transactions on Visualization and Computer Graphics. Vol. 5(1). pp. 47-61, 1999 
  3. P. Alliez and M. Desbrun: Valence-Driven Connectivity Encoding of 3D Meshes. Computer Graphics Forum (Proc. Eurographics'01), Vol. 17(3). pp. 480-489, 2001 
  4. H. Lee and P. Alliez and M. Desbrun: AngleAnalyzer: A Triangle-Quad Mesh Codec. Computer Graphics Forum (Proc. Eurographics'01), Vol. 22(3), pp. 383-391, 2002 
  5. H. Hoppe, Progressive Meshes. Siggraph 96 Conference Proceedings. pp. 99-108, 1996 
  6. Pierre Alliez and Mathieu Desbrun: Progressive Encoding for Lossless Transmission of 3D Meshes. ACM Siggraph Conference Proceedings. pp. 198-205, 2001 
  7. P-M. Gandoin and O. Devillers: Progressive Lossless Compression of Arbitrary Simplicial Complexes. ACM Trans. on Graphics. Vol. 21(3). (2002) 372-379 
  8. M. Isenburg and S. Gumhold: Out-of-core compression for gigantic polygon meshes. ACM Transactions on Graphics. Vol. 22(3) (2003) 935-942 
  9. Sungyul Choe, Junho Kim, Haeyoung Lee, Seungyong Lee, Hans-Peter Seidel: Mesh Compression with Random Accessibility. The 5th Korea-Israel Bi-National Conference on Geometric Modeling and Computer Graphics, October 2004 
  10. H. Lee and M. Desbrun and P. Schrder: Progressive Encoding of Complex Isosurfaces. ACM Transactions on Graphics (Proc. Siggraphics'03), Vol. 21(3). pp. 471-476, 2003 
  11. Andrei Khodakovsky and Peter Schrd er and Wim Sweldens: Progressive Geometry Compression. ACM Siggraph Conference Proceedings. pp. 271-278, 2000 
  12. Martin Isenburg and Jack Snoeyink: Face Fixer: Compressing Polygon Meshes With Properties. ACM SIGGRAPH 2000 Conference Proceedings. (2000) 263-270 
  13. Andrei Khodakovsky and Pierre Alliez and Mathieu Desbrun and Peter Schrder: Near-Optimal Connectivity Encoding of 2-Manifold Polygon Meshes. Special Issue of Graphical Model. (2002) 
  14. W. B. Pennebaker and J. L. Mitchell: JPEG: Still Image Date Data Compression Standard. Van Nostrand Reinhold. (1993) 135-252 
  15. G. Taubin: BUG: Bi-Level Isosurface Compression. Proc. of IEEE Visualization. (2002) 451-458 
  16. P. Cignoni and C. Rocchini and R. Scopigno: Metro: Measuring Error on Simplified Surfaces. Computer Graphics Forum. Vol. 17(2) (1998) 167-174 
  17. F. Wheeler: Adaptive Arithmetic Coding Source Code. http://www.cipr.rpi.edu/~wheeler/ac. (1996) 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일