$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

호스트 침해 발생 시점에서의 효율적 Forensics 증거 자료 수집 방안

An Efficient Method of Forensics Evidence Collection at the Time of Infringement Occurrence

초록

컴퓨터 Forensics는 급증하고 다양화 되어 가는 컴퓨터 관련 범죄가 발생할 시, 침입에 대한 전자 증거자료를 수집하고 분석함으로써 악의적 사용자를 찾아내는 분야로서, 최근 이에 관한 많은 연구가 진행되고 있다. 그러나 지금까지는 사건 발생 접수 후 전자 증거자료를 수집하는 방안에 대한 연구가 이루어져왔다. 본 논문에서는 사이버 범죄에 적절하게 대응하기 위해 악의적 사용자에 의해 고의적으로 시스템이 침해된 경우, 사건 발생 시점에 기초하여 양질의 증거자료를 효과적으로 수집하기 위한 방안에 대해 제안한다. 이를 위해 침입 탐지시스템(IDS)의 로그와 분석(감시 및 보호)대상 호스트에서의 로그 및 환경 설정 정보의 상관관계를 분석하는 기법을 제시한다. 제안한 기법은 이종 시스템 로그 간 상관관계 분석을 통해 범죄 대응을 위한 자료 손실을 최소화하기 위해, 감시 및 보호 대상 호스트들의 공격에 대한 침해 위험도를 계산하고 이를 기초로 호스트의 침해(실제 시스템이 위험에 노출)발생 시점에서 증거자료를 수집한다. 이를 통해, 침해 분석에 사용되는 분석 대상 자료의 양을 줄일 뿐만 아니라 침해 판단에 사용되는 자료의 손상을 최소화하여 판단의 정확성을 보장한다. 또한 정상적인 사용자나 공격자에 의한 전자증거자료의 훼손을 최소화한다.

Abstract

The Computer Forensics is a research area that finds the malicious users by collecting and analyzing the intrusion or infringement evidence of computer crimes such as hacking. Many researches about Computer Forensics have been done so far. But those researches have focussed on how to collect the forensic evidence for both analysis and poofs after receiving the intrusion or infringement reports of hosts from computer users or network administrators. In this paper, we describe how to collect the forensic evidence of good quality from observable and protective hosts at the time of infringement occurrence by malicious users. By correlating the event logs of Intrusion Detection Systems(IDSes) and hosts with the configuration information of hosts periodically, we calculate the value of infringement severity that implies the real infringement possibility of the hosts. Based on this severity value, we selectively collect the evidence for proofs at the time of infringement occurrence. As a result, we show that we can minimize the information damage of the evidence for both analysis and proofs, and reduce the amount of data which are used to analyze the degree of infringement severity.

참고문헌 (10)

  1. HerveDebar, Andreas Wespi, 'Aggregation and Correlation of Intrusion Detection Alerts', in proceedings of RAID 2001 
  2. Benjamin Morin and al., 'M2D2: a formal data model for IDS Alert Correlation', Proceedings of RAID 2002, Zurich, Switzerland, October 2002 
  3. iplog 2.2.3, a TCP/IP traffic logger, http://www.freshports.org/net/iplog 
  4. P. A. Porras and P. G. Neumann, 'EMERALD: Event Monitoring Enabling Responses to Anomalous Live Disturbances', National Information Systems Security Conference, 1997 
  5. Rootkit identifier, http://www.chkrootkit.org 
  6. Frederic Cuppens, Alexandre Miege, 'Alert Correlation in a Cooperative Intrusion Detection Framework', in proceedings of IEEE S&P, 2002 
  7. '월간 정보보호 뉴스', 한국정보보호진흥원 정기간행물, 10, 2005 
  8. Mariusz Burdach, 'Forensic Analysis of a Live Linux System, Pt. 1,2', http://www.securityfocus.com 
  9. Nessus 2.2.8, the network vulnerability scanner, http://www.nessus.org 
  10. Snort v2.0, an open source network intrusion detection system, http://www. snort.org 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일