$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

다중모델을 이용한 자동차 보험 고객의 이탈예측

Customer Churn Prediction of Automobile Insurance by Multiple Models

초록

데이터마이닝은 우리가 완벽하게 알고 있지 못하는 데이터 집합으로부터 알려지지 않은 사실이나 규칙을 찾아내는 작업이기 때문에 항상 높은 오류율의 위험에 처해 있다. 다중모델은 하나의 문제에 다수의 모델을 사용함으로써 오류율을 줄이고자 하는 접근 방법이다. 본 연구에서는 데이터마이닝의 예측 성능을 개선시킬 수 있는 새로운 방식의 다중모델을 제시한다. 이 다중모델은 입력사례의 특성에 따라 그에 적합하게 개발된 모델이 선정되어 적용되는 특징을 가지고 있다. 제시된 다중모델의 현실적인 성능 검증을 위해 국내 자동차 보험 가입 고객의 이탈 예측 문제에 적용하여, 그 결과를 단일모델의 결과와 비교 평가하였다. 비교 대상 단일모델로는, 사례기반추론, 인공신경망, 의사결정나무 등이 사용되었는데, 다중모델의 예측 성능이 어떤 단일모델의 예측 성능보다 우수한 것으로 나타났다.

Abstract

Since data mining attempts to find unknown facts or rules by dealing with also vaguely-known data sets, it always suffers from high error rate. In order to reduce the error rate, many researchers have employed multiple models in solving a problem. In this research, we present a new type of multiple models, called DyMoS, whose unique feature is that it classifies the input data and applies the different model developed appropriately for each class of data. In order to evaluate the performance of DyMoS, we applied it to a real customer churn problem of an automobile insurance company, The result shows that the DyMoS outperformed any model which employed only one data mining technique such as artificial neural network, decision tree and case-based reasoning.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (1)

  1. Kim, Jin-Wan ; Ok, Seok-Jae 2010. "Design of On-line Insurance Sales Support Systems Using Case-Based Reasoning" 한국콘텐츠학회논문지 = The Journal of the Korea Contents Association, 10(8): 349~359 

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

이 논문과 연관된 기능

DOI 인용 스타일