$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

정규문법과 동등한 일반화된 이진 이차 재귀 신경망

Generalized Binary Second-order Recurrent Neural Networks Equivalent to Regular Grammars

초록

이 논문은 정규문법과 동등한 의미를 가지는 일반적인 이진 이차 재귀 신경망(Generalized Binary Second-order Recurrent Neural Networks: GBSRNN)의 구조 및 학습 방법을 제안하며 이를 이용하여 정규언어를 인식하는 어휘분석기 구현을 소개한다. GSBRNN는 성분들의 이진값 표현으로 정규문법과 동치인 모든 표현에 대하여 하드웨어로 표현할 수 있는 방법을 제공하며 정규 문법과의 구조적 관련성을 보여준다. 정규문법에서 심볼들의 개수 m, 비단말 심볼의 개수 p, 단말 심볼의 개수 q, k인 문자열이 입력된다고 할 때, GBSRNN의 크기는 $O(m(p+q)^2)$ 이고 병렬처리 시간은 O(k)이며 순차처리 시간은 $O(k(p+q)^2)$이다.

Abstract

We propose the Generalized Binary Second-order Recurrent Neural Networks(GBSRNNf) being equivalent to regular grammars and ?how the implementation of lexical analyzer recognizing the regular languages by using it. All the equivalent representations of regular grammars can be implemented in circuits by using GSBRNN, since it has binary-valued components and shows the structural relationship of a regular grammar. For a regular grammar with the number of symbols m, the number of terminals p, the number of nonterminals q, and the length of input string k, the size of the corresponding GBSRNN is $O(m(p+q)^2)$ and its parallel processing time is O(k) and its sequential processing time, $O(k(p+q)^2)$.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (1)

  1. Jung, Soon-Ho 2012. "Inference of Context-Free Grammars using Binary Third-order Recurrent Neural Networks with Genetic Algorithm" 韓國컴퓨터情報學會論文誌 = Journal of the Korea Society of Computer and Information, 17(3): 11~25 

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일