$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

도메인 지식 기반 랩퍼 생성의 추출 성능 향상에 관한 연구

Study on the Improvement of Extraction Performance for Domain Knowledge based Wrapper Generation

초록

기존의 도메인 지식 기반의 랩퍼 학습 방법은 도메인에 대한 정보를 바탕으로 해당 정보 소스에 대한 랩퍼를 생성한다. 용용 분야에 맞게 정의된 도메인 지식을 이용함으로써 정보 소스에서 제공하는 다양한 텍스트의 의미와 형태를 이해할 수 있다. 그러나 정보 소스에서 제공되는 모든 텍스트에 의미 인식의 근거가 되는 레이블이 붙어서 제공되는 것이 아니기 때문에 도메인 지식만을 이용해서 랩퍼를 학습하는 방법은 한계에 부딪힐 수밖에 없다. 이러한 문제를 해결하기 위해서 본 논문은 인터넷에 존재하는 다양한 웹 정보 소스에서 효율적이고 정확하게 랩퍼를 생성하는 도메인 지식 기반의 확률적 랩퍼 생성 시스템을 제안한다. 효율적이고 정확한 랩퍼 생성 시스템을 구축하기 위해서 도메인 지식뿐 아니라 상세 정보로 연결되어 있는 하이퍼링크와 엔티티 인식을 위한 확률 모델을 이용한다. 이와 같은 방법을 적용함으로써 사용자의 개입 없이 다양한 정보 소스에 대해서 보다 추출 성능이 좋은 랩퍼를 생성할 수 있다.

Abstract

Wrappers play an important role in extracting specified information from various sources. Wrapper rules by which information is extracted are often created from the domain-specific knowledge. Domain-specific knowledge helps recognizing the meaning the text representing various entities and values and detecting their formats However, such domain knowledge becomes powerless when value-representing data are not labeled with appropriate textual descriptions or there is nothing but a hyper link when certain text labels or values are expected. In order to alleviate these problems, we propose a probabilistic method for recognizing the entity type, i.e. generating wrapper rules, when there is no label associated with value-representing text. In addition, we have devised a method for using the information reachable by following hyperlinks when textual data are not immediately available on the target web page. Our experimental work shows that the proposed methods help increasing precision of the resulting wrapper, particularly extracting the title information, the most important entity on a web page. The proposed methods can be useful in making a more efficient and correct information extraction system for various sources of information without user intervention.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일