$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

데토네이션 셀 구조 모사를 위한 수치적 요구 조건

Numerical Requirements for the Simulation of Detonation Cell Structures

초록

본 논문은 약한 불안정 데토네이션 영역부터 강한 불안정 데토네이션 영역까지 여러 영역에 걸친 데토네이션 파 셀 구조 모사에 대한 수치적 문제점들을 살펴보았다. 비열 비 값이 변하는 점성 유체 역학 방정식 및 1단계 Arrhenius 반응 모델 해석을 위하여 MUSCL-type TVD 기법을 이용한 공간 차분과 4차 정확도의 Runge-Kutta 시간 적분을 이용하였다. 일련의 수치해석 연구는 여러 반응 상수 및 격자 해상도에 따른 데토네이션 셀 구조를 해석하기 위하여 요구되는 계산 조건을 구하기 위하여 다양한 데토네이션 현상 영역에서 수행되었다. 다른 영역의 데토네이션 현상에서 셀 구조를 포착하기 위한 계산 영역의 크기와 최소 격자 해상도를 찾아내기 위하여 정상 1차원 ZND 해석 결과와 전산 해석 결과를 비교 검토하였다.

Abstract

Present study examines the numerical issues of cell structure simulation for various regimes of detonation phenomena ranging from weakly unstable to highly unstable detonations. Inviscid fluid dynamics equations with $variable-{\gamma} $ formulation and one-step Arrhenius reaction model are solved by a MUSCL-type TVD scheme and 4th order accurate Runge-Kutta time integration scheme. A series of numerical studies are carried out for the different regimes of the detonation phenomena to investigate the computational requirements for the simulation of the detonation wave cell structure by varying the reaction constants and grid resolutions. The computational results are investigated by comparing the solution of steady ZND structure to draw out the minimum grid resolutions and the size of the computational domain for the capturing cell structures of the different regimes of the detonation phenomena.

저자의 다른 논문

참고문헌 (15)

  1. Fickett, W., and Davis, W.C., Detonation: Theory and Experiment, Dover Publication, New York, 2000 
  2. Taki, S., and Fujiwara, T., "Numerical Simulation of Triple Shock Behavior of Gaseous Detonation," Proceedings of the Combustion Institute, Vol. 18, 1981, pp. 1671-1681 
  3. Oran, E.S., Boris, J.P., Young, T., Flanigan, M., Burks, T., and Picone, M., "Numerical Simulations of Detonations in Hydrogen-Air and Methane-Air Mixtures," Proceedings of the Combustion Institute, Vol. 18, 1981, pp. 1641-1649 
  4. Oran E.S., Weber, J.W., Stefaniw, E.I., Lefebvre, M.H., and Anderson, J.D., "A Numerical Study of a Two-Dimensional H2-O2-Ar Detonation Using a Detailed Chemical Reaction Model," Combustion and Flame, Vol. 113, 1998, pp.147-163 
  5. Gamezo, V.N., Desbordes, D., and Oran E.S., "Two-Dimensional Reactive Flow Dynamics in Cellular Detonation Waves," Shock Waves, Vol. 9, 1999, pp.11-17 
  6. Singh, S., Powers, J.M., and Paolucci, S., "Detonation Solutions from Reactive Navier-Stokes Equations," AIAA Paper 1999-0966, January 1999 
  7. Nikolic, M., Williams, D.N., and Bauwens, L., "Detonation Cell Sizes - A Numerical Study," AIAA Paper 1999-0967, January 1999 
  8. Gavrikov, A.I., Efimenko, A.A., and Dorofeev, S.B., "A Model for Detonation Cell Size Prediction from Chemical Kinetics," Combustion and Flame, Vol. 120, 2000, pp.19-33 
  9. Sharpe, G.J., "Transverse Waves in Numerical Simulations of Cellular Detonations," Journal of Fluid Mechanics, Vol. 447, 2001, pp.31-51 
  10. Hu, X.Y., Khoo, B.C., Zhang, D.L., and Jiang, Z.L., "The Cellular Structure of a Two-Dimensional H2/O2/Ar Detonation Wave" Combustion Theory Modeling, Vol. 18, 2004, pp.339-359 
  11. Choi, J.Y., and Yang, V., "Numerical Study of Detonation Wave Propagation in Combustion Wave Ignition (CWI) System," AIAA Paper 2003-5207, January 2003 
  12. Oosthuizen, P. H., Carscallen, W. E., Compressible Fluid Flow, McGraw-Hill, 1997, pp.88-99 
  13. Choi, J.-Y., Jeung, I.-S. and Yoon, Y., "Computational Fluid Dynamics Algorithms for Unsteady Shock-Induced Combustion, Part 1: Validation," AIAA Journal, Vol. 38, No. 7, July 2000, pp.1179-1187 
  14. Choi, J.-Y., Jeung, I.-S. and Yoon, Y., "Computational Fluid Dynamics Algorithms for Unsteady Shock-Induced Combustion, Part 2: Comparison," AIAA Journal, Vol. 38, No. 7, July 2000, pp.1188-1195 
  15. Austin, J. M., Pintgen, F. and Shepherd, J.E., "Reaction Zones in Highly Unstable Detonations," Proceedings of the Combustion Institute, Vol. 30/2, 2004, pp.1849-1858 

이 논문을 인용한 문헌 (4)

  1. Cho, Deok-Rae ; Won, Su-Hee ; Shin, Jae-Ryul ; Lee, Soo-Han ; Choi, Jeong-Yeol 2007. "Three-dimensional Numerical Analysis of Detonation Wave Structures in a Square Tube" 한국추진공학회지 = Journal of the Korean Society of Propulsion Engineers, 11(1): 1~10 
  2. Cho, Deok-Rae ; Won, Soo-Hee ; Shin, Jae-Ryul ; Choi, Jeong-Yeol 2008. "Three-dimensional Detoantion Wave Dynamics in a Circular Tube" 한국추진공학회지 = Journal of the Korean Society of Propulsion Engineers, 12(3): 68~75 
  3. Lee, Su-Han ; Cho, Deok-Rae ; Choi, Jeong-Yeol 2008. "Numerical Analysis of Detonation Wave Propagation Characteristics in Annular Channels" 한국추진공학회지 = Journal of the Korean Society of Propulsion Engineers, 12(2): 66~73 
  4. Kang, Ki-Ha ; Shin, Jae-Ryul ; Cho, Deok-Rae ; Choi, Jeong-Yeol 2011. "Numerical Analysis of a Highly Unstable Detonation Considering Viscosity and Turbulence Effects" 한국추진공학회지 = Journal of the Korean Society of Propulsion Engineers, 15(4): 57~64 

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일