$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

실시간 근전도 패턴인식을 위한 특징투영 기법에 관한 연구

A Study on Feature Projection Methods for a Real-Time EMG Pattern Recognition

Abstract

EMG pattern recognition is essential for the control of a multifunction myoelectric hand. The main goal of this study is to develop an efficient feature projection method for EMC pattern recognition. To this end, we propose a linear supervised feature projection that utilizes linear discriminant analysis (LDA). We first perform wavelet packet transform (WPT) to extract the feature vector from four channel EMC signals. For dimensionality reduction and clustering of the WPT features, the LDA incorporates class information into the learning procedure, and finds a linear matrix to maximize the class separability for the projected features. Finally, the multilayer perceptron classifies the LDA-reduced features into nine hand motions. To evaluate the performance of LDA for the WPT features, we compare LDA with three other feature projection methods. From a visualization and quantitative comparison, we show that LDA has better performance for the class separability, and the LDA-projected features improve the classification accuracy with a short processing time. We implemented a real-time pattern recognition system for a multifunction myoelectric hand. In experiment, we show that the proposed method achieves 97.2% recognition accuracy, and that all processes, including the generation of control commands for myoelectric hand, are completed within 97 msec. These results confirm that our method is applicable to real-time EMG pattern recognition far myoelectric hand control.

저자의 다른 논문

참고문헌 (28)

  1. OttoBock, MYOBOCK Arm Components 2005, 2005 
  2. S. C. Jacobson, D. F. Knutti, R. T. Johnson, and H. H. Shears, 'Development of the Utah artificial ann,' IEEE Trans. Biomed. Eng, vol. 29, pp. 249-269, Apr. 1982 
  3. P. J. Kyberd, O. E. Holland, P. H. Chappel, S. Smith, R. Tregidgoi, P. J. Bagwell, and M. Snaith, 'MARCUS: A two degree of freedim hand prosthesis with hierarchical grip control,' IEEE Trans. Rehab. Eng, vol. 3, no. 1, pp. 70-76, 1995 
  4. C. M. Light and P. H. Chappell, 'Development of a lightweight and adaptable multiple-axis hand prosthesis,' Medical Engineering and Physics, vol. 22, pp. 679-684, 2000 
  5. J. Butterfab, M. Grebenstein, H. Uu, and G Hirzinger, 'DLR-hand II: Next generation of a dexterous robot hand,' Proc. of IEEE Int'I. Conf. Robotics and Automation, pp. 109-114, 2001 
  6. B. Hudgins, P. A. Parker, and R. N. Scott, 'A new strategy for multifunction myoelectric control,' IEEE Trans. Biomed. Eng, vol. 40, no. 1, pp. 82-94, Jan. 1993 
  7. F. H. Y. Chan, Y. S. Yang, F. K. Lam, Y. T. Zhang, and P. A. Parker, 'Fuzzy EMG classification for prosthesis control,' IEEE Trans. Rehab. Eng, vol. 8, no. 3, pp. 305-311, Sept. 2000 
  8. H. P. Huang, Y. H. Liu, L. W. Liu, and C. S. Wong, 'EMG classification for prehensile posture using cascaded architecture of neural networks with self-organizing maps,' Proc. IEEE Int'l. Conf. Robotics and Automation, pp. 1497-1502, Sept. 2003 
  9. K. Englehart and B. Hudgins, 'A robust, real-time control scheme for multifunction myoelectric control,' IEEE Trans. Biomed. Eng, vol. 50, no. 7, pp. 848-854, July 2003 
  10. Y. Huang, K. B. Englehart, B. Hudgins, and A. D. C. Chan, 'Optimized Gaussian mixture models for upper limb motion classification,' Proc. IEEE Int'l. Conf. EMBS, pp. 72-75, Sept. 2004 
  11. A. D. C. Chan and K. B. Engelehart, 'Continuous myoelectric control for powered prostheses using hidden Markov models,' IEEE Trans. Biomed. Eng, vol. 52, no. 1, pp. 121-124, Jan 
  12. B. Karlik, M. O. Tokhi, and M. Alci, 'A fuzzy clustering neural network architecture for multifimction upper-limb prosthesis,' IEEE Trans. Biomed. Eng, vol. 50, no. 11, pp. 1255-1261, Nov. 2003 
  13. A. Hiraiwa, N. Uchida, N. Sonehara, and K. Shimohara, 'EMG pattern recognition by neural networks for prosthetic fingers control - Cyber finger,' Proc. Int'l. Symp. Measurement and control in Robotics, pp. 535-542, Nov. 1992 
  14. S. H. Park and S. P. Lee, 'EMG pattem recognition based on artificial intelligence techniques,' IEEE Trans. Rehab. Eng., vol. 6, no. 4, pp. 400-405, Dec. 1998 
  15. K. Englehart, B. Hudgins, P. A. Parker, and M. Stevenson, 'Classification of the myoelectric signal using time-frequency based representations,' Medical Engineering and Physics, vol. 21, pp. 431-438, 1999 
  16. K. Englehart, B. Hudgins, and P. A. Parker, 'A wavelet-based continuous classification scheme for multifunction myoelectric control,' IEEE Trans. Biomed Eng., vol. 48, no. 3, pp. 302-311, Mar. 2001 
  17. D. Nishikawa, W. Yu, H. Yokoi, and Y. Kakazu, 'EMG prosthetic hand controller discriminating ten motions using realtime learning method,' Proc. IEEE/RSJ Int'l. Conf. Intelligent Robots and Systems, pp. 1592-1597, 1999 
  18. O. Fukuda, T. Tsuji, M. Kaneko, and A. Otuka, ' A human-assisting manipulator teleoperated by EMG signals and arm motions,' IEEE Trans. Robot. Automat., vol. 19, no. 2, pp. 210-222, Apr. 2003 
  19. Surface Electromyography: Detection and Recording, Delsys Incorporated, 2002 
  20. http://www.delsys.com 
  21. http://www.ni.com 
  22. N. Saito and R. R. Coifinan, 'Local discriminant bases and their applications,' Journal of Mathematical Imaging and Vision, vol. 5, no. 4, pp. 337-358, 1995 
  23. S. G Mallat, 'A theory for multiresolution signal decomposition: The wavelet representation,' IEEE Trans. Pattern Anal. and Machine Intell., vol. 11, no. 7, pp. 674-693, July 1989 
  24. C. Chatterjee and V. P. Roychowdhury, 'On self-organizing algorithms and networks for class-separability features,' IEEE Trans. Neural Networks, vol. 8, no. 3, May 1997 
  25. R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. New York: Wiley, 2001 
  26. D. Lowe and R. Webb, 'Optimized feature extraction and bayes decision in feed-forward classifier networks,' IEEE Trans. Pattern Anal. and Machine Intell., vol. 13, no. 4, pp. 355-364, Apr. 1991 
  27. T. Kohonen, 'The self-organizing map,' Proc. IEEE, vol. 78, no. 9, pp. 1464-1480, 1990 
  28. J. W. Sammon, 'A nonlinear mapping for data structure analysis,' IEEE Trans. Comput., vol. C-18, pp. 401-409, 1969 

이 논문을 인용한 문헌 (1)

  1. Park, Se-Hoon ; Hong, Beom-Ki ; Kim, Jong-Kwon ; Hong, Eyong-Pyo ; Mun, Mu-Seong 2011. "Development of the Myoelectric Hand with a 2 DOF Auto Wrist Module" 제어·로봇·시스템학회 논문지 = Journal of institute of control, robotics and systems, 17(8): 824~832 

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일