$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

분극방향과 재료분포의 연속적 근사방법을 고려한 압전형 액추에이터의 구조설계

Structural Design of Piezoelectric Actuator Considering Polarization Direction and Continuous Approximation of Material Distribution

Abstract

In this paper, the polarization of piezoelectric materials is considered to improve actuation since the piezoelectric polarization has influences on the performance of the actuator. The topology design of compliant mechanism can be formulated as an optimization problem of material distribution in a fixed design domain and continuous approximation of material distribution (CAMD) method has demonstrated its effectiveness to prevent the numerical instabilities in topology optimization. The optimization problem is formulated to maximize the mean transduction ratio subject to the total volume constraints and solved using a sequential linear programming algorithm. The effect of CAMD and the performance improvement of actuator are confirmed through Moonie actuator and PZT suspension design.

참고문헌 (18)

  1. Sun, C. T. and Zhang, X. D., 1995, 'Use of Thickness-shear Mode in Adaptive Sandwich Structures,' Smart Materials and Structures, Vol. 4, pp. 202-206 
  2. Benjeddou, A., Trindade, M. A. and Ohayon, R., 1997, 'A Unified-Beam Finite Element Model for Extension and Shear Piezoelectric Actuation,' Journal of Intelligent Material Systems and Strnctures, Vol. 8, pp. 1012-1025 
  3. Silva, E. C. N. and Kikuchi, N., 1998, 'Optimization Methods Applied to Material and Flextensional Actuator Design Using the Homogenization Method,' Computer Methods in Applied Mechanics and Engineering, Vol. 159, pp.49-77 
  4. Silva, E. C. N., Nishiwaki, S. and Kikuchi, N., 2000, 'Topology Optimization of Flextensional Actuators,' IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 47, pp. 657-671 
  5. Chae, J. and Min, S, 2004, 'Structural Design of Piezoelectric Microactuator Using Topology Optimization,' Transactions of the KSME, A, Vo. 28, No.2, pp. 206-213 
  6. Bendsoe, M. P. and Kikuchi, N., 1988, 'Generating Optimal Topologies in Structural Design Using a Homogenization Method,' Computer Methods in Applied Mechanics and Engineering, Vol. 71, pp. 197-224 
  7. Gibert, J. M. and Austin, E. M., 2004, 'Inclusion of Piezoelectric Polarization in the Design of a Flextensional Actuator,' Smart Materials and Structures, Vol. 5383, pp. 183-193 
  8. Huber, J. E. and Fleck, N. A., 2001, 'Multi-Axial Electrical Switching of a Ferroelectric: Theory Versus Experiment,' Journal of the Mechanics and Physics of Solids, Vol. 49, pp. 785-811 
  9. Sigmund, O. and Petersson, J., 1998, 'Numerical Instabilities in Topology Optimization: A Survey on Procedures Dealing with Checkerboards, MeshDependencies and Local Minima,' Structural Optimization, Vol. 16, pp. 68-75 
  10. Diaz, A. R. and Sigmund, O., 1995, 'Checkerboard Patterns in Layout Optimization,' Structural Optimization, Vol. 10, pp. 40-45 
  11. Sigmund, O., 1994, 'Design of Material Structures Using Topology Optimization,' Ph.D. thesis, Department of solid Mechanics, Technical University of Denmark 
  12. Bourdin, B., 2001, 'Filters in Topology Optimization,' International Journal for Numerical Methods in Engineering, Vol. 50, pp. 2143-2158 
  13. Nishiwaki, S., Frecker, M., I., Min, S. and Kikuchi, N., 1998, 'Topology Optimization of Compliant Mechanisms Using the Homogenization Method,' International Journal for Numerical Methods in Engineering, Vol. 42, pp.535-559 
  14. Nishiwaki, S., Min, S., Yoo, J. and Kikuchi, N., 2001, 'Optimal Structural Considering Flexibility,' Computer Methods in Applied Mechanics and Engineering, Vol. 190, pp. 4457-4504 
  15. Matsui, K. and Terada, K., 2004, 'Continuous Approximation of Material Distribution for Topology Optimization,' International Journal for Numerical Methods in Engineering, Vol. 59, pp. 1925-1944 
  16. Lim, Y. S., Min, S., Yoo, J., Terada, K. and Nishiwaki, S., 2006, 'Comparative Studies on Topology Optimization Using Continuous Approximation of Material Distribution,' Transactions of the KSME, A, Vo. 30, No.2. pp. 164-170 
  17. Naillon, M., Coursant, R. H. and Besnier, F, 1983, 'Analysis of Piezoelectric Structures by a Finite Element Method,' Acta Electronica, Vol.25, pp. 341-362 
  18. Bendsee, M. P., 1989, 'Optimal Shape Design as a Material Distribution Problem,' Structural Optimization, Vol. 17, pp. 193-202 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일