$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

변형된 ICM 방식에 의한 영역판별

Region Decision Using Modified ICM Method

초록

MRF (Markov random fields)로 전후 관계가 모델링된 변형된 형태의 ICM 방식을 소개한다. 특징 추출을 위해 부합블록인접의 새로운 MRF 모델을 제시한다. 이 모델은 현재 고려중인 화소를 기점으로 지엽구조인 복수방향의 기하학적 인접화소군들을 발생시켜 집합을 형성한다. 전처리 작업을 통해 산출한 특정 영역 색도분포의 확률적 데이터를 근거로 매 인접화소군 화소들 사이의 색도분포와 인접화소군들 사이의 관련성 여부를 단계별로 확률적으로 비교 판별함으로 해당화소의 영역귀속을 결정한다. 귀속 영역이 판별된 화소에는 특정 색도를 부여하고 타영역의 원소와 차별한다. 이러한 과정을 전 화소들에 확대 적용하면서 관측영상은 영역별로 순차적으로 분류되며 정보가 추출된다. 대상 영상은 탁본영상으로서 바탕영역과 정보영역을 차별적으로 분류, 색도부여를 통해 문자만의 특징을 선별한다. 이 방식은 종래의 ICM 방식의 단점이었던 과/부족 평활 현상을 최소화하는 동시에, 벡터적 판별력 부가에 의한 특정영역 잡음 제거와 얼룩현상 극소화에 효과가 있음이 실험을 통해 확인할 수 있었다. 또한 MICM 방식을 탁본영상의 문자인식에 적용하면 우수한 효과가 있으리라 기대한다.

Abstract

In this paper, a new version of the ICM method(MICM, modified ICM) in which the contextual information is modelled by Markov random fields (MRF) is introduced. To extract the feature, a new local MRF model with a fitting block neighbourhood is proposed. This model selects contextual information not only from the relative intensity levels but also from the geometrically directional position of neighbouring cliques. Feature extraction depends on each block's contribution to the local variance. They discriminates it into several regions, for example context and background. Boundaries between these regions are also distinctive. The proposed algerian performs segmentation using directional block fitting procedure which confines merging to spatially adjacent elements and generates a partition such that pixels in unified cluster have a homogeneous intensity level. From experiment with ink rubbed copy images(Takbon, 拓本), this method is determined to be quite effective for feature identification. In particular, the new algorithm preserves the details of the images well without over- and under-smoothing problem occurring in general iterated conditional modes (ICM). And also, it may be noted that this method is applicable to the handwriting recognition.

저자의 다른 논문

참고문헌 (15)

  1. Y. Solihin and C. G. Leedham, 'Interal ratio: A new class of global thresholding techniques for handwriting images,' IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 21, no. 8, pp. 761-768, August 1999 
  2. Xiaoyi Jiang, D. Mojon, 'Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images,' IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 25, no. 1, pp. 131-137, Jan., 2003 
  3. S. Geman, and D. Geman, 'Stochastic relaxation gibbs distributions and the bayesian restoration of images,' IEEE Trans. Pattern Anal. Machine Intell., Vol. PAMI-6, no. 6, pp. 721-740, 1984 
  4. J. Besag, 'On the statistical analysis of dirty pictures,' J. R. Statist. Soc., Vol. 48, no. 3, pp. 259-302, 1986 
  5. J. K. Fwu and P. M. Djuric, 'Unsupervised vector image segmentation by a tree structure ICM algorithm,' IEEE Trans. Medical Imaging, Vol. 15, no. 6, pp. 871-880, Dec. 1996 
  6. S. Krishnamachari and R. Chellappa, 'Multiresolution Gauss-Markov random field models for texture segmentation,' IEEE Trans. on Image Processing, Vol. 6, no. 2, pp. 251-267, Feb. 1997 
  7. S. Foucher M. Germain, J. M. Boucher and G. B. Benie, 'Multisource classification using ICM and Dempster-Shafer theory,' IEEE trans. on Instru. and Measure., Vol. 51, no. 2, pp. 277-281, April 2002 
  8. F. Destrempes, and M. Mignotte, 'A statistical model for contours in images,' IEEE Trans. Pattern Anal. Machine Intell., Vol. 26, no. 5, pp. 626-638, May 2004 
  9. G. S. R. Fjortoft and A. H. S. Solberg, 'A bayesian approach to classification of multiresolution remote sensing data,' IEEE Trans. Geosci. Remote Sens., Vol. 43, no. 3, pp. 539-547, Mar. 2005 
  10. A. Owen, 'Image segmentation via iterated conditional expectations,' Technical Report, Department of Statistics, University of Chicago, 1989 
  11. H. Zhang, 'Image restoration: Flexible neighborhood systems and iterated conditional expectations,' Statistica Sinica Vol. 3, pp. 117-139, 1993 
  12. http://myhome.shinbiro.com/~kbyon/petro/takbon.htm 
  13. 황재호, '영상신호처리에 의한 금석문 음각문자 판독,' 2003 정보및제어학술회의논문집, 765-768쪽, 2003년 11월 
  14. M. M. Chang, A. M. Tekalp and M. I. Sezan, 'Simultaneous motion estimation and segmentation,' IEEE Trans. on Image Processing, Vol. 6, no. 9, pp. 1326-1333, Sept. 1997 
  15. J. Park and L. Kurz, 'Image enhancement using modified ICM method,' IEEE Trans. on Image Processing, Vol. 5, no. 5, pp. 765-771, May 1996 

이 논문을 인용한 문헌 (2)

  1. Hwang, Jae-Ho 2007. "Image Enhancement for Western Epigraphy Using Local Statistics" 電子工學會論文誌. Journal of the Institute of Electronics Engineers of Korea. SP, 신호처리, 44(3): 80~87 
  2. Hwang, Jung-Won ; Hwang, Jae-Ho 2009. "Geometric Scheme Analysis and Region Segmentation for Industrial CR Images" 電子工學會論文誌. Journal of the Institute of Electronics Engineers of Korea. SP, 신호처리, 46(4): 124~131 

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

이 논문과 연관된 기능

DOI 인용 스타일