$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

유한체 $GF(2^m)$상의 고속 병렬 승산기의 설계

Design of High-Speed Parallel Multiplier over Finite Field $GF(2^m)$

초록

본 논문에서는 $GF(2^m)$상에서 표준기저를 사용한 두 다항식의 승산을 비트-병렬로 실현하는 새로운 형태의 고속 병렬 승산기를 제안하였다. 승산기의 구성에 앞서, 피승수 다항식과 기약다항식의 승산을 병렬로 수행한 후 승수 다항식의 한 계수와 비트-병렬로 승산하여 결과를 생성하는 MOD 연산부를 구성하였다. MOD 연산부의 기본 셀은 2개의 AND 게이트와 2개의 XOR 게이트로 구성되며, 이들로부터 두 다항식의 비트-병렬 승산을 수행하여 승산결과를 얻도록 하였다. 이러한 과정을 확장하여 m에 대한 일반화된 회로의 설계를 보였으며, 간단한 형태의 승산회로 구성의 예를 $GF(2^4)$를 통해 보였다. 또한 제시한 승산기는 PSpice 시뮬레이션을 통하여 동작특성을 보였다. 본 논문에서 제안한 승산기는 기본 셀에 의한 MOD 연산부가 반복적으로 이루어짐으로서 차수 m이 매우 큰 유한체상의 두 다항식의 승산에서 확장이 용이하며, VLSI에 적합하다. 또한 승산기회로의 내부에 메모리 소자를 사용하지 않기 때문에 연산과정 중 소자에 의해 발생하는 지연시간이 적으므로 고속의 연산을 수행할 수 있다.

Abstract

In this paper we present a new high-speed parallel multiplier for Performing the bit-parallel multiplication of two polynomials in the finite fields $GF(2^m)$. Prior to construct the multiplier circuits, we consist of the MOD operation part to generate the result of bit-parallel multiplication with one coefficient of a multiplicative polynomial after performing the parallel multiplication of a multiplicand polynomial with a irreducible polynomial. The basic cells of MOD operation part have two AND gates and two XOR gates. Using these MOD operation parts, we can obtain the multiplication results performing the bit-parallel multiplication of two polynomials. Extending this process, we show the design of the generalized circuits for degree m and a simple example of constructing the multiplier circuit over finite fields $GF(2^4)$. Also, the presented multiplier is simulated by PSpice. The multiplier presented in this paper use the MOD operation parts with the basic cells repeatedly, and is easy to extend the multiplication of two polynomials in the finite fields with very large degree m, and is suitable to VLSI. Also, since this circuit has a low propagation delay time generated by the gates during operating process because of not use the memory elements in the inside of multiplier circuit, this multiplier circuit realizes a high-speed operation.

저자의 다른 논문

참고문헌 (27)

  1. B. A. Laws and C. K. Rushforth, 'A Cellular Array Multiplier for $GF(2^m)$ ,' IEEE Trans. Computers, vol. C-20, pp. 1573-1578, Dec. 1971 
  2. H. M. Shao, T. K. Truong, L. J. Deutsch, J. H. Yaeh and I. S. Reed, 'A VLSI Design of a Pipelining Reed-Solomon Decoder,' IEEE Trans. Computers, vol. C-34, pp. 393-403, May 1985 
  3. C. C. Wang, T. K. Truong, H. M. Shao, L. J. Deutsch, J. K. Omura and I. S. Reed, 'VLSI Architecture for Computing Multiplications and Inverses in $GF(2^m)$,' IEEE Trans. Computers, vol. C-34, pp. 709-717, Aug. 1985 
  4. P. A. Scott, S. E. Tarvares and L. E. Peppard, 'A Fast Multiplier for $GF(2^m)$,' IEEE J. Select. Areas Communications, vol. SAC-4, no. 1, pp. 707-717, Jan. 1986 
  5. I. S. Hsu, T. K. Truong, L. J. Deutsch and I. S. Reed, 'A Comparison of VLSI Architecture of Finite Field Multipliers Using Dual, Normal, or Standard Bases,' IEEE Trans. Computers, vol. C-37, no. 6, pp. 735-739, Jun. 1988 
  6. C. L. Wang and J. L. Lin, 'Systolic Array Implementation of Multipliers for Finite Fields $GF(2^m)$,' IEEE Trans. Circuits and Systems, vol. 38, no. 7, July 1991 
  7. C. K. Koc and B. Sunar, 'Low Complexity Bit-Parallel Canonical and Normal Basis Multipliers for a Class of Finite Fields,' IEEE Trans. Computers, vol. 47, no. 3, pp. 353-356, Mar. 1998 
  8. Kiamal Z. Pelanestzi, 'Multiplexer-Based Array Multipliers,' IEEE Trans. Computers, vol. 48, no.1, pp. 15-23, Jan. 1999 
  9. H. Wu and M. A. Hasan, 'Low Complexity Bit-Parallel Multipliers for a Class of Finite Fields,' IEEE Trans. Computers, vol. 47, no. 8, pp. 883-887, Nov. 1998 
  10. J. J. Wonziak, 'Systolic Dual Basis Serial Multiplier,' IEE Proceeding Computers and Digital Technology, vol. 145, no. 3, pp.237-241, July 1998 
  11. C. S. Yeh, I. S. Reed and T. K. Truong, 'Systolic Multipliers for Finite Field $GF(2^m)$ ,' IEEE Trans. Computers, vol. C-33, pp. 357-360, Apr. 1984 
  12. H. Wu and H. A. Hasan and L. F. Blake, 'New Low-Complexity Bit-Parallel Finite Fields Multipliers Using Weekly Dual Basis,' IEEE Trans. Computers, vol. 47, no. 11, pp. 1223-1234, Nov. 1998 
  13. G. Drolet, 'A New Representation of Finite Fields $GF(2^m)$ Yielding Small Complexity Arithmetic,' IEEE Trans. Computers, vol. 47, no. 9, pp. 938-946, Sept. 1998 
  14. A. Halbutogullari and C. K. Koc, 'Mastrovito Multiplier for General Irreducible Polynomials,' IEEE Trans. Computers, vol. 49, no. 5, pp, 503-518, May 2000 
  15. Kiamal Z. Pekrnestzi, 'Multiplexer-Based Array Multiplier,' IEEE Trans. Computer, vol. 48, No.1, pp.15-23, Jan. 1999 
  16. C. Y. Lee, E. H. Lu and J. Y. Lee, 'Bit Parallel Systolic Multipliers for $GF(2^m)$ Fields Defined by All-One and Equally Spaced Polynomials,' IEEE Trans. Computers, vol. 50, no. 5, pp. 385-392, May 2001 
  17. S. W. Wei, 'A Systolic Power-Sum Circuit for $GF(2^m)$ ,' IEEE Trans. Computers, vol. 43, no. 2, pp.226-229, Feb. 1994 
  18. E. D. Mastrovito, 'VLSI Design for Multiplication on Finite Field $GF(2^m)$ ,' Proc. International Conference on Applied Algebraic Algorithms and Error-Correcting Code, AAECC-6, Roma, pp. 297-309, July 1998 
  19. R. Lidl, H. Niederreiter and P. M. Cohn, Finite Fields, Addison-Wesley, Reading, Massachusetts, 1983 
  20. S. B. Wicker and V. K. Bhargava, Error Correcting Coding Theory, McGraw-Hill, New York, 1989 
  21. A. R. Masoleh and M. A. Hasan, 'A New Construction of Massey-Omura Parallel Multiplier over $GF(2^m)$ ,' IEEE Trans. ?Computers, vol. 51, no. 5, pp. 511-520, May 2002 
  22. H. Wu, 'Bit-Parallel Finite Field Multiplier and Squarer Using Polynomial Basis,' IEEE Trans. Computers, vol. 51, no. 7, pp.750-758, July 2002 
  23. C. L. Wang and J. H. Guo, 'New Systolic Arrays for C+AB2, Inversion, and Division in $GF(2^m)$ ,' IEEE Trans. Computers, vol. 49, no. 10, pp. 1120-1125, Oct. 2000 
  24. C. H. Kim, S. Oh and J. Lim, 'A New Hardware Architecture for Operation in $GF(2^m)$ ,' IEEE Trans. Computers, vol. 51, no. 1, pp. 90-92, Jan. 2002 
  25. H. Fan and Y. Dai, 'Fast Bit-Parallel $GF(2^m)$ Multiplier for All Trinomials,' IEEE Trans. Computer, vol. 54, no. 4, pp.485-490, Apr., 2005 
  26. A. K. Daneshbeh, and M. A. Hasan, 'A Class of Unidirectional Bit Serial Systolic Architectures for Multiplicative Inversion and Division over $GF(2^m)$,' IEEE Trans. Computer, vol. 54, no. 3, pp.370- 380, Mar. 2005 
  27. C. Lee, J. Horng, I. Jou and E. Lu, 'Low-Complexity Bit-Parallel Systolic Montgomery Multipliers for Special Classes of $GF(2^m)$ ,' IEEE Trans. Computer, vol. 54, no. 9, pp.1061-1070, Sep. 2005 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일