검색연산자 | 기능 | 검색시 예 |
---|---|---|
() | 우선순위가 가장 높은 연산자 | 예1) (나노 (기계 | machine)) |
공백 | 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 | 예1) (나노 기계) 예2) 나노 장영실 |
| | 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 | 예1) (줄기세포 | 면역) 예2) 줄기세포 | 장영실 |
! | NOT 이후에 있는 검색어가 포함된 문서는 제외 | 예1) (황금 !백금) 예2) !image |
* | 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 | 예) semi* |
"" | 따옴표 내의 구문과 완전히 일치하는 문서만 검색 | 예) "Transform and Quantization" |
네트워크를 통하여 서로 연결된 컴퓨팅 자원들의 집합을 분산 시스템이라고 정의할 수 있다. 최적화 문제 영역에서 가장 중요한 해결 기법 중에 하나인 병렬 유전자 알고리즘은 분산 시스템을 기반으로 하고 있다. 인터넷과 이동 컴퓨팅과 같은 동적 네트워크 환경 하에서 네트워크의 상태는 가변적으로 변할 수 있어 기존의 병렬 유전자 알고리즘을 분산 시스템에서 최적화 문제를 해결하기 위하여 그대로 사용하기에는 비효율적이다. 본 논문에서는 동적 네트워크 환경 하에서 분산 에이전트를 사용하여 병렬 유전자 알고리즘을 효율적으로 사용할 수 있는 기법을 제시한다.
Distributed Systems can be defined as set of computing resources connected by computer network. One of the most significant techniques in optimization problem domains is parallel genetic algorithms, which are based on distributed systems. Since the status of dynamic network environments such as Internet and mobile computing. can be changed continually, it must not be efficient on the dynamic environments to solve an optimization problem using previous parallel genetic algorithms themselves. In this paper, we propose the effective technique, in which the parallel genetic algorithm can be used efficiently on the dynamic network environments.
원문 PDF 다운로드
원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)
DOI 인용 스타일