$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

영역평균 기반의 지오데식 동적 윤곽선 모델에 의한 뇌실 분할

Segmentation of Brain Ventricle Using Geodesic Active Contour Model Based on Region Mean

초록

본 논문에서는 지오데식 동적 윤곽선 모델을 이용하여 뇌실 영역을 검출하기 위하여 기존의 에지지시함수를 대신한 영역 기반의 곡선진행억제 함수를 제안하였다. 제안한 곡선 진행 억제 함수는 뇌실 영역의 검출에 매우 효과적이었으며, 이 함수는 MRI 영상에서 밝게 나타나는 뇌실 영역의 평균 밝기를 기반으로 한다. 본 논문에서는 제안한 방법이 기존의 방법보다 뇌실 영역을 잘 검출할 수 있음을 다양한 척도를 이용하여 수치적으로 비교하였다. 실제 정상과 뇌종양에 의한 뇌질환 영상에 적용시켜 뇌실 검출 과정을 시각적으로 비교하여 우수성을 검증하였다.

Abstract

This paper proposed a curve progress control function of the area base instead of the existing edge indication function, in order to detect the brain ventricle area by utilizing a geodesic active contour model. The proposed curve progress control function is very effective in detecting the brain ventricle area and this function is based on the average brightness of the brain ventricle area which appears brighter in MRI images. Compared numerically by using various measures, the proposed method in this paper can detect brain ventricle areas better than the existing method. By examining images of normal and diseased brain's images by brain tumor, we compared the several brain ventricle detection algorithms with proposed method visually and verified the effectiveness of the proposed method.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일