$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Halomonas subglaciescola DH-1의 생장에 미치는 염화나트륨의 영향

Effect of NaCl on Halomonas subglaciescola DH-1 Incapable of Growing at Non-Salinity

초록

호염성세균 H. subglaciescola DH-1은 염화나트륨이 없거나 0.8 M 이하로 존재하는 환경에서 생장하지 못한다. 이 호혐성세균은 2.0 M의 염화나트륨이 존재하는 조건에서는 최적온도($30^{\circ}C$)보다 높은 $40^{\circ}C$에서 생장이 가능하였으나, 0.8 M의 염화나트륨이 존재하는 조건에서는 생장이 크게 저하되었다. 세포추출물을 염화나트륨이 존재하는 조건에서 $50^{\circ}C$로 1시간 동안 열처리하였을 때 세포내 효소의 활성이 유지되었으나, 염화나트륨이 없는 조건에서 열처리하였을 때 효소의 활성은 유지되지 않았다. 반면, 대장균의 세포추출물의 효소활성은 1.0 M이상의 염화나트륨이 존재할 때 온도 또는 pH와 관계없이 측정되지 않았다. H. subglaciescola DH-1은 pH $7{\sim}10$의 범위에서 생장하였고, 생장을 위한 최적 pH는 8이었다. 이러한 생리적인 특성으로부터 염화나트륨은 H. subglaciescola DH-1의 물질대사를 위한 필수적인 무기영양소라는 사실을 유추할 수 있다.

Abstract

A halophilic bacterium, H. subglaciescola DH-1, grew at 2.0 M salinity, but did not grow at 0.8 M salinity when cultivated at higher temperature ($40^{\circ}C$) than optimum ($30^{\circ}C$). When the cell extract of strain DH-1 was heated at $50^{\circ}C$ for 60 min in the absence of NaCl, isocitrate dehydrogenase and malate dehydrogenase lost their activities, but when it was heated in the presence of 2.0 M NaCl, the activity was maintained. Meanwhile, the cell extract of E. coli did not catalyze the reduction of $NAD^+$ to NADH coupled with the oxidation of isocitrate and malate at higher salinities than 1.0 M. The pH range for DH-1 was 7 to 10, and that for E. coli was 5 to 9. DH-1 was not grown in conditions with sodium salts other than NaCl.

참고문헌 (31)

  1. Abee, T., K. J. Hellingwerf, and W. N. Konings. 1988. Effects of potassium ions on proton motive force in Rhodobacter sphaeroides. J. Bacteriol. 170: 5647-5653 
  2. Adams, R., J. Bygraves, M. Kogul, and N. J. Russell. 1987. The role of osmotic effects in haloadaptation of Vibrio costicola. J. Gen. Microbiol. 133: 1861-1870 
  3. Amezaga, M. R. and I. R. Booth. 1999. Osmoprotection of Escherichia coli by peptone is mediated by the uptake and accumulation of free proline but not of proline-containing peptides. Appl. Envir. Microbiol. 65: 5272-5278 
  4. Barth, S., M. Huhn, B. Matthey, A. Klimka, E. A. Galinski, and A. Engert. 2000. Compatible-solute-supported periplasmic expression of functional recombinant proteins under stress conditions. Appl. Envir. Microbiol. 66: 1572-1579 
  5. Boch, J., B. Kempt, and E. Bremer. 1994. Osmorgulation in Bacillus subtilis. Synthesis of the osmoprotectant glycine betaine from exogenously provided choline. J. Bacteriol. 176: 5364-5371 
  6. Boch, J., B. Kempf, R. Schmid, and E. Bremer. 1996. Synthesis of the osmoprotectant glycine-betaine in Bacillus subtilis: characterization of gbsAB gene, J. Bacteriol. 178: 5121-5129 
  7. Canovas D., C. Vargas, L. N. Csonka, A. Ventosa, and J. J. Nieto. 1998. Synthesis of glycine betaine from exogenous choline in the moderately halophilic bacterium Halomonas elongata. Appl. Environ. Microbiol. 64: 4095-4097 
  8. Choquet, C. G., I. Ahoshai, M. Klein, and D. J. Kushner. 1991. Formation and role of glycine betaine in the moderate halophile Vibrio costicola: site for action of $Cl^-$ ions. J. Bacteriol. 171: 880-886 
  9. Ciulla, R. A., M. R. Diza, B. F. Taylor, and M. F. Roberts. 1997. Organic osmolytes in aerobic bacteria from Mono Lake, an alkaline, moderately hypersaline environment. Appl. Environ. Micrbiol. 63: 220-226 
  10. Cummings, S. P. and D. J. Gilmour. 1995. The effect of NaCI on the growth of Halomonas species: accumulation and utilization of compatible solutes. Microbiology 141: 1413-1418 
  11. Del Moral, A., J. Severin, A. Ramos-Cormenzana, H. G. Truper, and E. A. Galinski. 1994. Compatible solutes in new moderately halophilic isolates. FEMS Microbiol. Lett. 122: 165-172 
  12. Dobson, S. J. and P. D. Frenzmann. 1996. Unification of the genera Deleya, Halomonas, and Halovibrio and the species Parcoccus halodenitrificans into a single genus, Halomonas and placement of the genus Zymobacter in the family Halomondaceae. Int. J. Syst. Bacteriol. 46: 550-558 
  13. Fendrich, C. 1986. Halovibrio variabilis gen. nov. sp. nov. Pseudomonas halophila sp. nov. and a new halophilic aerobic coccoid eubacterium from Great Salt lake, Utah. Syst. Appl. Microbiol. 11: 36-43 
  14. Frings, E., H. J. Junte, and E. A. Galinski. 1993. Compatible solutes in representatives of the genera Brevibacterium and Corynebacterium: occurrence of tetrahydropyrimidine and glutamine. FEMS Microbiol. Lett. 109: 25-32 
  15. Frings, E., T. Sauer, and E. A. Glinski. 1995. Production of hydroxyectoin: high cell-density cultivation and osmotic downshock of Marinococcus strain M52. J. Biotechnol. 43: 53-61 
  16. Galinski, E. A .1995. Osmoadaptation in bacteria. Adv. Microb. Physiol. 19: 273-328 
  17. Grarnmann, K., A. Volke, and H. J. Ktinte. 2002. New type of osmoregulated solute transporter identified in Halophilic members of the Bacteria Domain: TRAP transporter TeaABC mediates uptake of ectoine and hydroxyectoine in Halomonas elongate DSM2581. J. Bacteriol. 184: 3078-3085 
  18. Hagemann, M., S. Richter, and S. Mikkat. 1996. The ggtA gene encodes a subunit of the transport system for the osmoprotective compound glucosylglycerol in Synechocystis sp. strain PCC 6803. J. Bacteriol. 179:714-720 
  19. Kobayashi, T., H. Kanai, T. Hayashi, T. Akiba, R. Akaboshi, and K. Horikoshi. 1992. Haloalkaliphilic maltotriose-forming alpha-amylase from the archaebacterium Natronococcus sp. strain Ah-36. J. Bacteriol. 174: 3439-3444 
  20. Kraegeloh, A and H. J. Kunte. 2002. Novel insights into the role of potassium for osmoregulation in Halomonas elongata. Extremophiles. 6: 453-462 
  21. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 
  22. Lai, M. C., D. R. Yang, and M. J. Chuang. 1999. Regulatory factors associated with synthesis of the oxmolyted glycine betaine in the halophilic methanoarchaeon Methanolhalophilus protucafensis. Appl. Environ. Microbiol. 65: 828-833 
  23. Mellado, E., M. T. Garcia, J. J. Nieto, K. N. Timmis, and A. Veatosa. 1995. Phylogenetic inferences and taxonomic consequences of 16S ribosomal DNA sequence comparison of Chromohalobacter marismortui, Vocaniella eurihalina, and Deleya salina and reclassification of V. eurihalina as Halomonas eurihalina. comb. nov. Int. Syst. Bacteriol. 45: 712-716 
  24. Mojica, F. J. M., E. Cisneros, C. Ferrer, F. Rodriguez-Valera, and G. Juez. 1997. Osmotically induced response in representatives of halophilic prokaryotes: the bacterium Halomonas elongate and the Archaeon Haloferax volcanii. J. Bacteriol. 179: 5471-5481 
  25. Neumann, S., U. Matthey, G. Kaim, and P. Dimroth. 1998. Purification and properties of the $F_lF_o$ ATPase of Ilyobacter tartaricus, a sodium ion pump. J. Bacteriol. 180: 3312-3316 
  26. Ono, H., K. Sawadas, N. Khunajakr, T. Tao, M. Yamamoto, M. Hiramoto, A. Shinmyo, M. Takano, and Y. Murooka. 1999. Characterization of biosynthetic enzymes for ectoine as a compatible solute in a moderately halophilic eubacterium. Halomonas elongata. J. Bacterial. 181: 91-99 
  27. Peterson, B. N. J. and M. L. Salin. 1993. Purification of a catalase-peroxidase from Halobacterium halobium: characterization of some unique properties of the halophilic enzyme. J. Bacteriol. 175: 4197-4202 
  28. Peterson, B. N. J. and M. L. Salin. 1995. Purification and characterization of a mesohalic catalase from the halophilic bacterium Halobactertum halobium. J. Bacterial. 177: 378-384 
  29. Prowe, S. G., Jack L. C. van de Vossenberg, A. J. M. Driessen, G. Antranikian, and W. N. Konings. 1996. Sodium-coupled energy transduction in the newly isolated thermoalkaliphilic strain LBS3. J. Bacteirol. 178: 4099-4104 
  30. Quesado, E., V. Bejar, M. J. Valderrama, and A. Ramons-Cormenzana. 1990. Vocaniella eurihalina gen. Nov., sp. nov., a moderately halophilic nonmotile gram-negative rod. Int. J. Syst. Bacterial. 40: 261-267 
  31. Ryu H. J., Y. J. Jeong, and D. H. Park. 2004. Growth and physiological properties of wild type and mutants of Halomonas subglaciescola DH-1 in saline environment. J. Microbial. 42: 174-180 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일