$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

확장개체모델에서의 학습과 계층파악

Learning and Classification in the Extensional Object Model

Abstract

Quiet often, an organization tries to grapple with inconsistent and partial information to generate relevant information to support decision making and action. As such, an organization scans the environment interprets scanned data, executes actions, and learns from feedback of actions, which boils down to computational interpretations and learning in terms of machine learning, statistics, and database. The ExOM proposed in this paper is geared to facilitate such knowledge discovery found in large databases in a most flexible manner. It supports a broad range of learning and classification styles and integrates them with traditional database functions. The learning and classification components of the ExOM are tightly integrated so that learning and classification of objects is less burdensome to ordinary users. A brief sketch of a strategy as to the expressiveness of terminological language is followed by a description of prototype implementation of the learning and classification components of the ExOM.

참고문헌 (30)

  1. Clark, P. and Niblett, T. 'The CN2 Algorithm,' Machine Learning, Vol. 6, No. 4, 1989, pp. 261-283 
  2. Creecy, R., Masand, B., Smith, S., and Waltz, D. 'Trading MIPS and Memory for Knowledge Engineering,' Communications of the ACM, Vol. 35, No. 8, August 1992, pp. 48-64 
  3. Frawley, W., Piatetsky-Shapiro, G., and Matheus, C. 'Knowledge Discovery in Databases: An Overview,' in Proc. First International Conference on Knowledge Discovery and Databases, October 1991, New York 
  4. Li, Q. and McCleod, D. 'Object Flavor Evolution Through Learning in an Object-Oriented Database System,' in Proc. of the 2nd International Conference on Expert Database Systems, L. Kerschberg (ed.), 1989, Benjamin Cummings, Menlo Park, CA, pp. 469-495 
  5. Matheus, C.J., Chan, P.K., and Piatetsky-Shapiro, G., 'Systems for Knowledge Discovery in Databases,' IEEE Transactions on Knowledge and Data Engineering, Vol. 5, No. 6, December 1993, pp. 903-913 
  6. McCann, J. and Gallagher, J. Expert Systems for Scanner Data Environments, International Series in Quantitative Marketing, Kluwer Academic Publishers, 1990 
  7. Orton, J. and Weick, K. 'Loosely Coupled Systems: A Reconceptualization,' Academy of Management Review, Vol. 15, No. 2, 1990 
  8. Quinlan, J. 'Induction of Decision Trees,' Machine Learning, Vol. 1, 1986, pp. 81-106 
  9. Aha, D., Kibler, D. ani Albert, M 'Instance-Based Learning Algorithms,' Machine Learning, Vol. 6, 1991, pp. 37-66 
  10. Jung, C. A Framework for Computer-Supported Interpretation Systems, Ph.D. Dissertation, The University of Texas at Austin, Department of Management Science and Information Systems, May 1992 
  11. Kim, W. 'Object-Oriented Databases: Definition and Research Directions,' IEEE Transactions on Knowledge and Data Engineering, Vol. 2, No. 3, September 1990 
  12. Mannino, M., Choi, I., and Batory, D.'The Object-Oriented Functional Data Lanaguage,' IEEE Transactions on Software Engineering, Vol. 16, No. 11, November 1990, pp. 1258-1272 
  13. DL86 Daft, R. and Lengel, R. 'Organizational Information Requirements, Media Richness and Structural Design,' Management Science, Vol. 32, No. 5, 1986 
  14. Lalonde, W., Thomas, D., and Pugh, D. 'An Exemplar Based Smalltalk,' in Proc. OOPSLA Conference, October 1986 
  15. Hansen, E. and Widom, J. 'Rule Processing in Active Database Systems,' in Advances in Database and Artificial Intelligence, JAI Press, Greenwich, Connecticut, 1992 
  16. Utgoff, P. 'Incremental Induction of Decision Trees,' Machine Learning, Vol. 4, 1989, Kluwer Academic Publishers, pp. 161-186 
  17. Daft, R. and Weick, C. 'Towards a Model of Organizations as Interpretation Systems,' Academy of Management Review, Vol. 9, No. 2, 1984 
  18. Gennari, J., Langley, P., and Fisher, D. 'Models of Incremental Concept Formation,' Artificial Intelligence, Vol. 40, 1989, pp. 11-61 
  19. Smyth, P. and Goodman, R. 'An Information Theoretic Approach to Rule Induction from Databases,' IEEE Transactions on Knowledge and Data Engineering, Vol. 4, No. 4 (August 1992), pp. 301-316 
  20. Borgida, A., Brachman, R., McGuinness, D., and Resnick, L. 'CLASSIC: A Structural Data Model for Objects,' in Proc. ACM SIGMOD Conference, May 1989, Portland 
  21. Fayyad, U., Piatetsky-Shapiro, G. and Smyth P., 'From Data Mining to Knowledge Discovery in Databases,' AI Magazine, Fall 1996, pp. 37-54 
  22. Clark, P. and Boswell, R. 'Rule Induction with CN2: Some Recent Improvements,' in Proc. Machine Learning - European Working Session on Learning, Porto, Portugal, Springer-Verlag, March 1991, pp. 151-163 
  23. Ceri, S. and Widom, J. 'Deriving Production Rules for Constraint Maintenance,' in Proc. of the Sixteenth International Conf. on Very Large Data Bases, Brisbane, Australia, August 1990, pp. 566-577 
  24. Lieberman, H. 'Using Prototypical Objects to Implement Shared Behavior in Object Oriented Systems,' in Proc. OOPSLA Conference, October 1986 
  25. Goebel M., Le Gruenwald. 'A Survey of Data Mining and Knowledge Discovery Software Tools,' ACM SIGKDD Explorations Newsletter, Vol. 1, 1, 1999, pp. 1-20 
  26. Anthony, M. and Biggs, N. Computational Learning Theory, Cambridge University Press, 1992 
  27. Ioannidis, Y., Saulys, T., D. and Witsitt, A. 'Conceptual Learning in Database Design,' ACM Transactions on Information Systems, Vol. 10, No. 3, July 1992, pp. 265-294 
  28. Borgida, A. and Williamson, K. 'Accommodating Exceptions in Databases and Refining the Schema by Learning from Them,' in Proc. of the 11th International VLDB Conference, August 1985, Stockholm, pp. 72-81 
  29. Rao, Raghav and An, Joon M., 'The effect of team composition on decision scheme, information search, and perceived complexity,' Journal of Organizational Computing and Electronic Commerce, 1995, Vol. 5 Issue 1, pp. 1-20 
  30. Sciore, E. 'Object Specialization,' ACM Transactions on Information Systems, Vol. 7, No. 2, 1989 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일