$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Abstract AI-Helper 아이콘AI-Helper

Applications of nanotechnology in the medical field have provided the fundamentals of tremendous improvement in precise diagnosis and customized therapy. Recent advances in nanomedicine have led to establish a new concept of theragnosis, which utilizes nanomedicines as a therapeutic and diagnostic t...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 그러나 최근 개발된 새로운 약제들은 맞춤치료를 목표로 하여 점차 기존의 의약품을 대체하는 추세에 있으며, 특히 표적화된 약물전달시스템 (targeted drug delivery system)을 이용한 새로운 치료법의 개발과 더불어 비침습적 생체영상화(n(m~invasive in vivo imaging)의 획기적 발전은 나노의학의 미래를 더욱 밝혀주고 있디] 또한 신경전자인터페이스(gim Mtric interfaa;) 나 나노전자공학(nanoeleb tronics) 을 근간으로 하는 새로운 센서의 개 발과, 나노기술을 이용한 신소재 개발과 접목된 재생공학(regnomics)은 나노의학의 새로운 한 분야로 각광받고 있으며, 나노기술을 이용한 세포치료기구의 개발 역시 의학 분야에서의 혁신적 변화를 가져올 것으로 예상된다. 이러한 배경 하에 본 종설에서는 지금까지 연구되고 있는 나노물질을 이용한 약물전달시스템과 나노입자의 표적화 및 그 특성에 관한 고찰을 통하여 테라그노시스를 가능하게 하는 나노의약품 개발을 통한 핵의학 연구에 보탬이 되고자 한다.
본문요약 정보가 도움이 되었나요?

참고문헌 (96)

  1. Harris JM, Chess RB. Effect of PEGylation on pharmaceuticals. Nat Rev Drug Discov 2003:2:215-21 

  2. NEKTAR Therapeutics Co. Polyethylene glycol and derivatives for advanced PEGylation. Catalogue 2005-2006 Nektar Advanced PEGylation 

  3. Veronese FM, Harris JM. Introduction and overview of peptide and protein pegylation. Adv Drug Deliv Rev 2002:54:453-6 

  4. Bailon P, Palleroni A, Schaffer CA, Spence CL, Fung WJ, Porter JE et al. Rational Design of a Potent, Long-Lasting Form of Interferon: A 40 kDa Branched Polyethylene Glycol- Conjugated Interferon-2a for the Treatment of Hepatitis C. Bioconjug Chem 2001:12:195-202 

  5. Ng EW, Shima DT, Calias P, Cunningham Jr. ET, Guyer DR, Adamis AP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 2006:5:123-32 

  6. Cheng TL, Wu PY, Wu MF, Chern JW, Roffler SR. Accelerated clearance of polyethylene glycol-modified proteins by antipolyethylene glycol IgM. Bioconjug Chem 1999:10:520-8 

  7. Dams ETM, Laverman P, Oyen WJG, Storm G, Scherphof GL, van Der Meer JW et al. Accelerated Blood Clearance and Altered Biodistribution of Repeated Injections of Sterically Stabilized Liposomes. J Pharmacol Exp Ther 2000:292:1071-9 

  8. Caliceti P, Veronese FM. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Adv Drug Deliv Rev 2003:55:1261-77 

  9. Mahesh C. Polylactides/Glycolides-Excipients for Injectable Drug. Drug Del Tech 2002:2:21 

  10. Johnson OL, Cleland JL, Lee HJ, Charnis M, Duenas E, Jaworowicz W et al. A month?long effect from a single injection of microencapsulated human growth hormone. Nat Med 1996:2:795-9 

  11. Parveen S, Sahoo SK. Polymeric nanoparticles for cancer therapy. J Drug Targeting 2008:16:108-23 

  12. Shenoy DB, Amiji MM. Poly(ethylene oxide)-modified poly (epsilon-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int J Pharm 2005:293:261-70 

  13. Devalapally H, Duan Z, Seiden MV, Amiji MM. Paclitaxel and ceramide co-administration in biodegradable polymeric nanoparticulate delivery system to overcome drug resistance in ovarian cancer. Int J Cancer 2007:121:1830-80 

  14. Vercruysse KP, Prestwich GD. Hyaluronate derivatives in drug delivery. Crit Rev Ther Drug Carrier Syst 1998:15:513-55 

  15. Motokawa K, Hahn SK, Nakamura T, Miyamoto H, Shimoboji T. Selectively crosslinked hyaluronic acid hydrogels for. sustained release formulation of erythropoietin. J Biomed Mat Res 2006:78A:459-65 

  16. Oh EJ, Kang SW, Kim BS, Jiang G, Cho IH, Hahn SK. Control of the molecular degradation of hyaluronic acid hydrogels for tissue augmentation. J Biomed Mater Res A 2008:86:685-93 

  17. Luo Y, Prestwich GD. Synthesis and Selective Cytotoxicity of a Hyaluronic Acid-Antitumor Bioconjugate. Bioconj Chem 1999: 10:755-63 

  18. Pusateri, AE., McCarthy SJ, Gregory KW, Harris RA, Cardenas L, McManus LT et al. Effect of a chitosan-based hemostatic dressing on blood loss and survival in a model of severe venous hemorrhage and hepatic injury in swine. Journal of Trauma 2003:4:177-82 

  19. Kean T, Roth S, Thanou M. Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. J Control Release 2003:103:643-653 

  20. Dodane V, Vivivalam VD. Pharmaceutical applications of chitosan. Pharm Sci Technol Today 1998:1:246-253 

  21. Illum L. Chitosan and its use as a pharmaceutical excipient. Pharm Res 1998:15:1326-31 

  22. Xu Y, Du Y. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int J Pharm 2003:250:215-26 

  23. Qi LF, Xu ZR, Li Y, Jiang X, Han XY. In vitro effects of chitosan nanoparticles on proliferation of human gastric carcinoma cell line MGC803 cells. World J Gastroenterol 2005:11:5136-41 

  24. Qi L, Xu Z, Chen M. In vitro and in vivo suppression of hepatocellular carcinoma growth by chitosan nanoparticles. Eur J Cancer 2007:43:184-93 

  25. Sinha R, Kim GJ, Nie S, Shin DM. Nanotechnology in cancer therapeutics: Bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 2006:5:1909-17 

  26. Stinchcombe TE, Socinski MA, Walko CM, O'Neil BH, Collichio FA, Ivanova A et al. Goldberg RM, Lindley C, Claire Dees E..Phase I and pharmacokinetic trial of carboplatin and albumin-bound paclitaxel, ABI-007 (abraxane(R)) on three treatment schedules in patients with solid tumors. Cancer Chemother Pharmacol 2007:60:759-66 

  27. Brahim NK, Desai N, Legha S, Soon-Shiong P, Theriault RL, Rivera E et al. Phase I and pharmacokinetic study of ABI-007, a Cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel. Clin Cancer Res 2002:8:1038-44 

  28. Dreis S, Rothweiler F, Michaelis M, Cinatl J Jr, Kreuter J, Langer K. Preparation, characterisation and maintenance of drug efficacy of doxorubicin-loaded human serum albumin (HSA) nanoparticles. Int J Pharm 2007:341:207-14 

  29. Gabizon A, Martin F. Polyethylene glycol-coated (pegylated) liposomal doxorubicin. Rationale for use in solid tumours. Drugs 1997:54:15-21 

  30. Hussein MA, Wood L, Hsi E, et al. A phase II trial of pegylated liposomal doxorubicin, vincristine, and reduced-dose dexamethasone combination therapy in newly diagnosed multiple myeloma patients. Cancer 2002:95:2160-8 

  31. Rifkin RM, Gregory SA, Mohrbacher A. Pegylated liposomal doxorubicin, vincristine, and dexamethasone provide significant reduction in toxicity compared with doxorubicin, vincristine, and dexamethasone in patients with newly diagnosed multiple myeloma: a phase III multicenter randomized trial. Cancer 2006: 106:848-58 

  32. Hussein MA, Wood L, Hsi E, Srkalovic G, Karam M, Elson P et al. A Phase II trial of pegylated liposomal doxorubicin, vincristine, and reduced-dose dexamethasone combination therapy in newly diagnosed multiple myeloma patients. Cancer 2002:95: 2160-8 

  33. Vlugt-Wensink KD, Jiang X, Schotman G, Kruijtzer G, Vredenberg A, Chung JT et al. In vitro degradation behavior of microspheres base don cross-linked dextran. Biomacromol 2006: 7:2983-90 

  34. Allen TM, Cullis PR. Drug Delivery Systems: Entering the Mainstream. Science 2004:303:1818-22 

  35. Prescott JH, Lipka S, Samuel Baldwin, Sheppard Jr NF, Maloney JM, Coppeta J et al. Chronic, programmed polypeptide delivery from an implanted, multireservoir microchip device. Nat Biotechnol 2006:24:437-8 

  36. Duros Technology Platform. http://www.durect.com/pdf/duros_ fact_sheet2001.pdf. Accessed Oct. 2008 

  37. Staples M, Daniel K, Cima MJ, Langer R. Pharmaceutical Research 2006:23:847-863 

  38. Brent G. http://www.hpl.hp.com/news/2008/jan-mar/skin_patch. html. Accessed Oct. 2008 

  39. Kwon SY. In Vitro Evaluation of Transdermal Drug Delivery by a Micro-needle Patch. Controlled Release Society 31st Annual Meeting, TRANSACTIONS 2004, Abstract #115 

  40. Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discovery 2008:7:771-82 

  41. Allen TM, Cullis PR. Drug Delivery Systems: Entering the Mainstream. Science 2004:303:1818-22 

  42. Hashida M. Effect of particle size and charge on the disposition of lipid carriers after intratumoral injection into tissue-isolated tumors. Pharm Res 1998:15:128-32 

  43. Parveen S, Sahoo SK. Polymeric nanoparticles for cancer therapy. Journal of Drug Targeting 2008:16:108-23 

  44. Banks WA, Kastin AJ. Characterization of lectin-mediated brain uptake of HIV-1 GP120. J Neurosci Res 1998:54:522-9 

  45. Fischer D, Kissel T. Histochemical characterization of primary capillary endothelial cells from porcine brains using monoclonal antibodies and fluorescein isothiocyanate-labelled lectins: Implications for drug delivery. Eur J Pharm Biopharm 2001:52:1-11 

  46. Mo Y, Lim LY. Preparation and in vitro anticancer activity of WGA-conjugated PLGA nanoparticles loaded with paclitaxel and isopropyl myristate. J Control Release 2005:107:30-42 

  47. Jeong YI, Seo SJ, Park IK, Lee HC, Kang IC, Akaike T et al. Cellular recognition of paclitaxel-loaded polymeric nanoparticles composed of poly(gamma-benzyl L-glutamate) and poly(ethylene glycol) diblock copolymer endcapped with galactose moiety. Int J Pharm 2005:296:151-61 

  48. Vasir JK, Labhasetwar V. Targeted drug delivery in cancer therapy. Technol Cancer Res Treat 2005:4:363-74 

  49. Daniels TR, Delgado T, Helguera G, Penichet ML. The transferrin receptor part II: Targeted delivery of therapeutic agents into cancer cells. Clin Immunol 2006:121:159-76 

  50. Daniels TR, Delgado T, Rodriguez JA, Helguera G, Penichet ML. The transferrin receptor part I: Biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin Immunol 2006:121:144-58 

  51. Xu Z, Gu W, Huang J, Sui H, Zhou Z, Yang Y et al. In vitro and in vivo evaluation of actively targetable nanoparticles for paclitaxel delivery. Int J Pharm 2005:288:361-8 

  52. Lu Y, Low PS. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev 2002:54:675- 93 

  53. Vasir JK, Labhasetwar V. Targeted drug delivery in cancer therapy. Technol Cancer Res Treat 2005:4:363-74 

  54. Zhang Z, Huey LS, Feng SS. Folate-decorated poly(lactidecoglycolide)- vitamin E TPGS NPs for targeted drug delivery. Biomaterials 2007:28:1889-99 

  55. Thorpe PE. Vascular targeting agents as cancer therapeutics. Clin Cancer Res 2004:10:415-27 

  56. Weiner LM. Fully human therapeutic monoclonal antibodies. J Immunother 2006:29:1-9 

  57. Kirpotin DB, Drummond DC, Shao Y, Shalaby MR, Hong K, Nielsen UB et al. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 2006:66: 6732-40 

  58. Burgstaller P, Jenne A, Blind M. 2002. Aptamers and aptazymes: Accelerating small molecule drug discovery. Curr Opin Drug Discov Devel 5:690-700 

  59. Pestourie C, Tavitian B, Duconge F. 2005. Aptamers against extracellular targets for in vivo applications. Biochimie 87:921- 30 

  60. Hicke BJ, Stephens AW. Escort aptamers: A delivery service for diagnosis and therapy. J Clin Invest 2000:106:923-8 

  61. Farokhzad OC, Karp JM, Langer R. Nanoparticle-aptamer bioconjugates for cancer targeting. Expert Opin Drug Deliv 2006:3:311-24 

  62. Moghimi SM, Hunter AC, Murray JC. Long- circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 2001:53:283-318 

  63. Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov Today 2003:8:1112-20 

  64. Cai W, Chen X. Nanoplatforms for targeted molecular imaging in living subjects. Small. 2007:3:1840-54 

  65. Cai W, Chen X. Multimodality molecular imaging of tumor angiogenesis. J Nucl Med. 2008:49 Suppl 2:113S-28S 

  66. Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissues. Adv Drug Deliv Rev 2004:55:329-47 

  67. Oh KT, Bronich TK, Kabanov AV. Micellar formulations for drug delivery based on mixtures of hydrophobic and hydrophilic Pluronic block copolymers. J Control Release 2004:94:411-22 

  68. Lukyanov AN, Gao ZG, Torchilin VP. Micelles from polyethylene glycol/phosphatidylethanolamine conjugates for tumor drug delivery. J Control Release 2003:91:97-102 

  69. Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science 2004:303:1818-1822 

  70. Moghimi SM, Hunter AC, Murray JC. Long- circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 2001:53:283-31 

  71. Biancco, A. Carbon nanotubes for the delivery of therapeutic molecules. Exp. Opin. Drug Deliv 2004:1:57-65 

  72. Lopez CF, Nielsen SO, Moore PB, Klein ML. Understanding nature's design for a nanosyringe. Proc Natl Acad Sci USA 2004:101:4431-4 

  73. Ali SS, Hardt JI, Quick KL, Kim-Han JS, Erlanger BF, Huang TT et al. A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Radical Biol Med 2004:37:1191-202 

  74. Park KH, Chhowalla M, Iqbal Z, Sesti F. Single-walled carbon nanotubes are a new class of ion channel blockers. J Biol Chem 2003:278:50212-6 

  75. Tomalia DA, Frechet JMJ. Discovery of dendrimers and dendritic polymers: a brief historical perspective. J Polym SciPart A: Polym Chem 2002:40:2719-28 

  76. Haag R. Supramolecular drug-delivery systems based on polymeric core-shell architectures. Angew Chem Int Ed Engl 2004:43:278-82 

  77. Rosa BA, Schengrund CL. Dendrimers and antivirals: a review. Curr Drug Targets Infect Disord 2005:5:247-54 

  78. Derfus AM, Chen AA, Min DH, Ruoslahti E, Bhatia SN. Targeted quantum dot conjugates for siRNA delivery. Bioconjug Chem 2007:18:1391-6 

  79. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 2007:7: 3065-70 

  80. Hoshino A, Fujioka K, Oku T, Nakamura S, Suga M, Yamaguchi Y, et al. Quantum dots targeted to the assigned organelle in living cells. Microbiol Immunol 2004:48:985-94 

  81. Howarth M, Takao K, Hayashi Y, Ting AY. Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc Natl Acad Sci USA 2005:102:7583-8 

  82. Gao X, Cui Y, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004:22:969-76 

  83. Derfus AM, Chan WCW, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 2004:4:11-8 

  84. Cho SJ, Maysinger D, Jain M, Roder B, Hackbarth S, Winnik FM. Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir 2007:23:1974-80 

  85. Green M, Howman E. Semiconductor quantum dots and free radical induced DNA nicking. Chem Commun (Camb) 2005: 121-3 

  86. Choi AO, Cho SJ, Desbarats J, Lovric J, Maysinger D. Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells. J Nanobiotechnol 2007:5:1-5 

  87. Lovric J, Cho SJ, Winnik FM, Maysinger D. Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 2005:12:1227-34 

  88. Zhu MQ, Han JJ, Li AD. CdSe/CdS/SiO2 core/shell/shell nanoparticles. J Nanosci Nanotechnol 2007:7:2343-8 

  89. Kim D, Park S, Lee JH, Jeong YY, Jon S. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc 2007: 129:7661-5 

  90. Edwards EW, Chanana M, Wabg DY, Mohwald H. Stimuliresponsive transport of nanoparticles across water-oil interfaces. Angew Chem Int Ed Engl 2008:47:320-3 

  91. Esenturk EN, Walker AR Surface-enhanced Raman scattering spectroscopy via gold nanostars. J Raman Spectroscopy 2008: Sep:Epub ahead of print 

  92. Schellenberger EA, Reynolds F, Weissleder R, Josephson L. Surface-functionalized nanoparticle library yields probes for apoptotic cells. Chem Bio Chem 2004:5:275-9 

  93. Jaffer FA, Weissleder R. Seeing within―molecular imaging of the cardiovascular system. Circ Res 2004:94:433-45 

  94. Perez, JM, Josephson L, Weissleder R. Use of magnetic nanoparticles as nanosensors to probe for molecular interactions. Chem Bio Chem 2004:5:261-4 

  95. Gilad AA, Walczak P, McMahon MT, Na HB, Lee JH, An K et al. MR Tracking of Transplanted Cells With 'Positive Contrast' Using Manganese Oxide Nanoparticles. Magnetic Resonance in Medicine 2008:60:1-7 

  96. Cheon J, Lee JH. Synergistically Integrated Nanoparticles as Multimodal Probes for Nanobiotechnology. Acc Chem Res 2008 Aug:Epub ahead of print 

저자의 다른 논문 :

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로