$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Abstract AI-Helper 아이콘AI-Helper

Development of rudder gap flow blocking device for lift augmentation and cavitation suppression is presented. In order to verify the performance of this device, cavitation visualization and surface pressure measurements were carried out in a cavitation tunnel. Numerical simulations were conducted us...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • The cavitation phenomenon was then recorded with a video camera and analyzed. For surface pressure measurements, holes were made on the surface of the model and the pressure was measured using a pressure transducer and scanival.,e.
  • In order to further investigate the effectiveness of the gap blocking devices, the surface pressure measurements were carried out at non-cavitating atmospheric conditions. Note that, due to the cavitation bubbles floating around and sucked into the pressure tap, the pressure measurements were not possible when the tank was depressurized.
  • To confirm that the gap flow blocking devices function as expected, cavitation inception tests and surface pressure measurements were carried out with the pintle section model with 5-degree deflection angle. The experimental condition is summarized in Table 1.

대상 데이터

  • The holes were located around mid-span with a 3mm interval, along a line that makes approximately five degrees with the flow direction. The diameter of each hole is 2mm (see Figure 7) Model tests were carried out in the cavitation tunnel, whose measurement section extends 1 m long, 0.15 m wide, and 0.5 m high. The controllable pressure range is 15 kPa to 300 kPa and the maximum flow speed is 16 m/s.

이론/모형

  • The CFD code, FLUENT 6.2, employs a cell-centered finite-volume method. Convective terms are discretized using the second order accurate upwind scheme, while diffusive terms are discretized using the second order accurate central differencing scheme.
  • The computational results were obtained by solving the Reynolds-averaged Navier-Stokes (RANS) equations.
  • Convective terms are discretized using the second order accurate upwind scheme, while diffusive terms are discretized using the second order accurate central differencing scheme. The velocity-pressure coupling and overall solution procedure are based on a SIMPLEC type segregated algorithm. The convergence criteria in the present study were at least three orders of magnitude drop in the mass conservation imbalance and momentum equation residuals, which are deemed sufficient for mo아 steady flow solutions.
본문요약 정보가 도움이 되었나요?

참고문헌 (13)

  1. Boo, G.T, I.H Song and S.C Shin. 2003a. Numerical Simulation for the Rudder in order to Control the Cavitation Phenomena. Proc. International Workshop on Frontier Technology in Ship and Ocean Engineering, Seoul, Korea 

  2. Boo, K.T., J.M.Han, I.H.Song and S.C.Shin. 2003b. Viscous Flow Analysis for the Rudder Section Using FLUENT Code. Journal of the Society of Naval Architects of Korea, 40, 4, 30-36.(In Korean) 

  3. Choi, J.-E. and S.-H.Chung. 2007. Characteristics of Gap Flow of a 2-Dimensional Horn-type Rudder Section. Journal of the Society of Naval Architects of Korea, 44, 2, 101-110.(In Korean) 

  4. Kim, S-E, and S.H Rhee. 2002. Assessment of Eight Turbulence Models for a Three-Dimensional Boundary Layer Involving Crossflow and Streamwise Vortices. AIAA Paper 2002-0852, Proc.40th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA 

  5. Kim, S.P., J.J Park, Y.S.Kim, Y.H.Jang, Y.B.Choi and B.G.Paik. 2006. An Experimental Research on Gap Cavitation Erosion of Semi-spade Rudder. Journal of the Society of Naval Architects of Korea, 43, 5, 578-585.(In Korean) 

  6. Paik, B.-G., K.-Y.Kim, J.-W.Ahn, Y.-S.Kim, S.-P.Kim and J.-J.Park. 2008. Experimental study on the gap entrance profile affecting rudder gap cavitation. Ocean Engineering, 35, 139-149 

  7. Park, S.H, J.K.Heo and B.S.Yu. 2007. Numerical Study on Horn Rudder Section to Reduce Gap Cavitation. 10th International Symposium on Practical Design of Ships and Other Floating Structures (2007 PRADS), 2, Houston, Texas, USA, 1255-1260 

  8. Rhee, S.H, and H.Kim. 2006. Analysis of Rudder Cavitation in Propeller Slipstream and Development of its Suppression Devices. Proc.2006 SNAME Maritime Technology Conference & Expo, Ft.Lauderdale, FL 

  9. Rhee, S.H., and B.Makarov. 2005. Validation Study for Free-Surface Wave Flows Around Surface-Piercing Cylindrical Structures.Proc.24th International Conference on Offshore Mechanics and Arctic Engineering, Halkidiki, Greece 

  10. Rhee, S.H., B.Makarov, H.Krishnan and V.Ivanov. 2005. Assessment of Volume of Fluid Method for Free-Surface Wave Flows.Journal of Marine Science and Technology, 10, 4, 173-180 

  11. Shen, Y.T., C.W., Jiang and K.D.Remmers. 1997. A Twisted Rudder for Reduced Cavitation. J.Ship Research, 41, 4, 260-272 

  12. Shih, T.-H., W.W.Liou, A.Shabbir, Z., Yang and Z.Zhu.1995. A New k- $\varepsilon$ Eddy- Viscosity Model for High Reynolds Number Turbulent Flows - Model Development and Validation. Computers Fluids, 24, 3, 227-238 

  13. Song, I.H., K.J.Paik, S.M.Ahn, J.K.Oh and J.C.Suh. 2004. Cavitation Characteristics on various 2-Dimensional Rudder with Gap. Proc. Annual Autumn Metting of the Society of Naval Architects of Korea, Sancheong, Korea, 51-56.(In Korea) 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로