$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

미국 서부 해안 IMPROVE 측정소에 대한 대기 중 PM2.5의 오염원 기여도 추정
Estimation of Source Apportionment of Ambient PM2.5 at Western Coastal IMPROVE Site in USA 원문보기

한국대기환경학회지 = Journal of Korean Society for Atmospheric Environment, v.24 no.1, 2008년, pp.30 - 42  

황인조 (대구대학교 환경공학과) ,  김동술 (경희대학교 환경.응용화학대학 대기오염연구실 및 환경연구센터)

Abstract AI-Helper 아이콘AI-Helper

In this study, the chemical compositions of $PM_{2.5}$ samples collected at the Redwood National Park IMPROVE site in California from March 1988 to May 2004 were analyzed to provide source identification and apportionment. A total of 1,640 samples were collected and 33 chemical species we...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구에서는 1988년 3월 2일부터 2004년 5월 30일까지 미국 서부인 캘리포니아 주에 위치한 IMPROVE 측정소인 Redwood 국립공원에서 채취한 PM2.5 자료를 이용하여 PMF 모델링을 수행하였으며 , 본 연구지역에 존재하는 각 오염원의 파악 및 그 오염원의 정량적 기여도를 추정하고자 하였다. 또한 CPF와 NPR 모델을 적용하여 지 역 규모의 오염원 위치를 파악하고자 하였으며, 본 연구의 수행을 통하여 다음과 같은 결론을 얻을 수 있었다.
  • 본 연구에서는 최적의 오염원 수를 결정하기 위하여 또한 물리적으로 가장 합리적인 모델링 결과를 산출하기 위하여 오염원의 수를 변경하며 모델링을 수행하였다. 최종적으로 scaled 잔차행렬, Q 값, rotmat (인자회전 상수의 표준편차 즉, 인자의 회전에 따른 불확실 도를 의미하며 pxp행렬) 행렬 등을 이용하여 FPEAK값이 0일 때 최적의 오염원 수를 5개로 정하였다.
  • 이 자료를 PMF 모델의 입력자료로 이용하여 본 연구지역에 존재하는 PMh 오염원의 파악 및 정 량적 기여도를 추정하고자 하였다. 또한 기상자료(풍향, 풍속)와 각 오염원의 기여도 자료를 이용한 CPF (conditional probability function)오) NPR (nonparametric regression) 분석을 수행하여 지역규모 오염원의 위치 파악을 시도하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (33)

  1. 한영지 (2006) 수용원 모델을 사용한 대기 중 수은 오염원 의 위치 추정에 대한 연구, 한국대기환경학회지, 22(2), 179-189 

  2. 황인조(2003) PMF 모델을 이용한 대기 중 PM-10 오염원의 정량적 기여도 추정, 경희대학교 대학원 환경학 과 박사학위 논문 

  3. 황인조, 김동술 (2003) PMF 모델을 이용한 대기 중 PM-10 오염원의 확인, 한국대기환경학회지, 19(6), 701- 717 

  4. Begum, B.A., P.K. Hopke, and W. Zhao (2005) Source identification of fine particles in Washington, DC, by expanded factor analysis modeling, Environmental Science and Technology, 39, 1129-1137 

  5. Calcabrini, A., S. Meschini, M. Marra, L. Falzano, M. Colone, B.D. Berardis, L. Paoletti, G. Arancia, and C. Fiorentini (2004) Fine environmental particulate engenders alterations in human lung epithelial A549 cells, Environmental Research, 95, 82-91 

  6. Chan, Y.C., R.W. Simpson, G.H. Mctainsh, P.D. Vowles, D.D. Cohen, and G.M. Bailey (1999) Source apportionment of visibility degradation problems in Brisbane (Australia) using the multiple linear regression techniques, Atmospheric Environment, 33, 3237-3250 

  7. Chow, J.C., J.G. Watson, D. Crow, and D.H. Lowenthal (2001) Comparison of IMPROVE and NIOSH carbon measurements, Aerosol Science and Technology, 34, 23-34 

  8. Chow, J.C., J.G. Watson, L.C. Pritchett, W.R. Pierson, C.A. Fraizer, and R.G. Purcell (1993) The DRI thermal /optical reflectance carbon analysis system, description, evaluation and applications in US air quality studies, Atmospheric Environment, 27A, 1185- 1201 

  9. Hardle, W. (1990) Applied Nonparametric Regression, Cambridge University Press, Cambridge 

  10. Harrison, R.M. and J. Yin (2000) Particulate matter in the atmosphere: Which particle properties are important for its effects on health? Science of the Total Environment, 249, 85-101 

  11. Henry, R.C., Y.-S. Chang, and C.H. Spiegelman (2002) Location nearby sources of air pollution by nonparametric regression of atmospheric concentrations on wind direction, Atmospheric Environment, 36, 2237-2244 

  12. Hopke, P.K. (1985) Receptor Modeling in Environmental Chemistry, John Wiley & Sons, New York 

  13. Hopke, P.K., R.E. Lamb, and D.F.S. Natusch (1980) Multielemental characterization of urban roadway dust, Environmental Science Technology, 14, 164- 172 

  14. Huffman, H.D. (1996) Comparison of the light absorption coefficient and carbon measures for remote aerosols: an independent analysis of data from the IMPROVE network, Atmospheric Environment, 30(1), 73-83 

  15. Hwang, I.J. and P.K. Hopke (2006) Comparison of source apportionments of fine particulate matter at two San Jose STN sites, Journal of the Air and Waste Management Association, 56, 1287-1300 

  16. Hwang, I.J. and P.K. Hopke (2007) Estimation of source apportionment and potential source locations of $PM_{2.5}$ at a west coastal IMPROVE site, Atmospheric Environment, 41, 506-518 

  17. Kim, E. and P.K. Hopke (2004) Comparison between conditional probability function and nonparametric regression for fine particle source directions, Atmospheric Environment, 38, 4667-4673 

  18. Kim, E. and P.K. Hopke (2005) Improving source apportionment of fine particles in the eastern United States utilizing temperature-resolved carbon fractions. Journal of the Air and Waste Management Association, 55, 1456-1463 

  19. Liu, W., P.K. Hopke, and R.A. VanCuren (2003) Origins of fine aerosol mass in the western United States using positive matrix factorization, Journal of Geophysical Research, 108(D23), 4716 

  20. Malm, W.C. and J.L. Hand (2007) An Examination of the physical and optical properties of aerosols collected in the IMPROVE program, Atmospheric Environment, 41, 3407-3427 

  21. Malm, W.C., J.F. Sisler, D. Huffman, R.A. Eldred, and T.A. Cahill (1994) Spatial and seasonal trends in particle concentration and optical extinction in the United States, Journal of Geophysical Research, 99 (D1), 1347-1370 

  22. Paatero, P. (1997) Least squares formulation of robust nonnegative factor analysis, Chemometrics and Intelligent Laboratory Systems, 37, 23-35 

  23. Paatero, P. and P.K. Hopke (2003) Discarding or downweighting high-noise variables in factor analytic models, Analytica Chimica Acta, 490, 277-289 

  24. Paatero, P., P.K. Hopke, B.A. Begum, and S.K. Biswas (2005) A graphical diagnostic method for assessing the rotation in factor analytical models of atmospheric pollution, Atmospheric Environment, 39, 193-201 

  25. Polissar, A.V., P.K. Hopke, and R.D. Poirot (2001) Atmospheric aerosol over Vermont: chemical composition and sources, Environmental Science and Technology, 35, 4604-4621 

  26. Polissar, A.V., P.K. Hopke, P. Paatero, W.C. Malm, and J.F. Sisler (1998) Atmospheric aerosol over Alaska 2. Elemental composition and sources, Journal of Geophysical Research, 103(D15), 19045-19057 

  27. Polissar, A.V., P.K. Hopke, P. Paatero, Y.J. Kaufmann, D.K. Hall, B.A. Bodhaine, E.G. Dutton, and J.M. Harris (1999) The aerosol at Barrow, Alaska: long-term trends and source locations, Atmospheric Environment, 33, 2441-2458 

  28. Ramadan, Z., X.H. Song, and P.K. Hopke (2000) Identification of sources of Phoenix aerosol by positive matrix factorization, Journal of the Air and Waste Management Association, 50, 1308-1320 

  29. Seinfeld, J.H. and S.N. Pandis (1998) Atmospheric Chemistry and Physics, from Air Pollution to Climate Change, John Wiley & Sons, New York 

  30. Yu, K.N., Y.P. Cheung, T. Cheung, and R.C. Henry (2004) Identifying the impact of large urban airports on local air quality by nonparametric regression, Atmospheric Environment, 38, 4501-4507 

  31. Zhao, W. and P.K. Hopke (2006) Source identification for fine aerosols in Mammoth Cave National Park, Atmospheric Research, 80(4), 309-322 

  32. Zhou, L., P.K. Hopke, and W. Liu (2004) Comparison of two trajectory based models for locating particle sources for two rural New York sites, Atmospheric Environment, 38, 1955-1963 

  33. Zhou, L., P.K. Hopke, P. Paatero, J.M. Ondov, J.P. Pancras, N.J., Pekney, and C.I. Davidson (2004a) Advanced factor analysis for multiple time resolution aerosol composition data, Atmospheric Environment, 38, 4909-4920 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로