$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

휴대폰 환경에서의 근적외선 얼굴 및 홍채 다중 인식 연구

A Study on Multi-modal Near-IR Face and Iris Recognition on Mobile Phones

초록

휴대폰에서 보안 필요성이 증가함에 따라 개인 인증을 위하여 홍채, 지문, 얼굴과 같은 단일 생체 정보를 이용한 많은 연구들이 진행되었으나 단일 생체 인식에서는 인식 정확도에 한계가 있었다. 따라서 본 논문에서는 휴대폰 환경에서 고 인식율을 위해 얼굴과 홍채를 결합하는 방법에 대해 제안한다. 본 논문에서는 근적외선 조명과 근적외선 통과 필터를 부착한 휴대폰의 메가 픽셀 카메라를 사용하여 근적외선 얼굴 및 홍채 영상을 동시에 취득한 후, SVM(Support Vector Machine)을 기반으로 스코어 레벨에서 결합하였다. 또한, 저 연산의 로가리듬(Logarithm) 알고리즘을 사용한 얼굴 데이터의 조명 변화에 대한 정규화와 극 좌표계 변환 및 홍채 코드의 비트 이동 매칭에 의한 홍채 영역의 이동, 회전, 확대 및 축소에 대한 정규화를 통해 SVM의 분류 복잡도와 얼굴, 홍채 데이터의 본인 변화도를 최소화함으로써 인식 정확도를 향상시켰으며, 저 연산의 휴대폰 환경에서 정수혈 기반의 얼굴 및 홍채 인식 알고리즘을 사용하여 처리시간을 향상시켰다. 실험 결과, SVM을 사용한 인식의 정확성이 단일 생체(얼굴 또는 홍채), SUM, MAX, MIN 그리고 Weighted SUM을 사용하는 것보다 우수한 것을 알 수 있었다.

Abstract

As the security requirements of mobile phones have been increasing, there have been extensive researches using one biometric feature (e.g., an iris, a fingerprint, or a face image) for authentication. Due to the limitation of uni-modal biometrics, we propose a method that combines face and iris images in order to improve accuracy in mobile environments. This paper presents four advantages and contributions over previous research. First, in order to capture both face and iris image at fast speed and simultaneously, we use a built-in conventional mega pixel camera in mobile phone, which is revised to capture the NIR (Near-InfraRed) face and iris image. Second, in order to increase the authentication accuracy of face and iris, we propose a score level fusion method based on SVM (Support Vector Machine). Third, to reduce the classification complexities of SVM and intra-variation of face and iris data, we normalize the input face and iris data, respectively. For face, a NIR illuminator and NIR passing filter on camera are used to reduce the illumination variance caused by environmental visible lighting and the consequent saturated region in face by the NIR illuminator is normalized by low processing logarithmic algorithm considering mobile phone. For iris, image transform into polar coordinate and iris code shifting are used for obtaining robust identification accuracy irrespective of image capturing condition. Fourth, to increase the processing speed on mobile phone, we use integer based face and iris authentication algorithms. Experimental results were tested with face and iris images by mega-pixel camera of mobile phone. It showed that the authentication accuracy using SVM was better than those of uni-modal (face or iris), SUM, MAX, NIN and weighted SUM rules.

저자의 다른 논문

참고문헌 (25)

  1. Ruud Bolle, Jonathan Connell, Sharanthchandra Pankanti, Nalini Ratha, Andrew Senior "Guide to Biometrics" Springer Professional Computing. p20-21, 2003 
  2. A. K. Jain, R. M. Bolle and PanKanti "Biometrics: Personal Identification in a Networked Society", 1999 
  3. T. Mansfield, G. Kelly, D. Chandler and J. Kan "Biometric product testing final report" Technical report, National Physical Laboratory of the UK, 2001 
  4. A. Ross, A. Jain and J. Z. Qian "Information Fusion in Biometrics" Pattern Recognition Letters, Vol. 24, issue 13, pp.2115-2125, 2003 
  5. Byunjun Son, Yillbyung Lee, "Biometric Authentication System Using Reduced Joint Feature Vector of Iris and Face" Lecture Notes in Computer Science (AVBPA), pp. 513-522, 2005 
  6. J. Y. Gan and Yu Liang "A Method for Face and Iris Feature Fusion in Identity Authentication" IJCSNS (International Journal of Computer Science and Network Security), Vol. 6, No. 2B, 2006 
  7. C. Ching-Han and C. T. Chu "Fusion of face and iris features for multimodal biometrics" Lecture Notes in Computer Science (ICB), Vol. 3832, pp. 571-580, 2006 
  8. Y. Wang, T. Tan and A. K. Jain "Combining Face and Iris Biometrics for Identity verification" Lecture Notes in Computer Science (AVBPA), Vol. 2688, pp.805-813, 2003 
  9. P. Gupta, A. Rattani, H. Mehrotra and A. K. Kaushik "Multimodal biometrics system for efficient human recognition" The International Society for Optical Engineering (SPIE) Vol. 6202, 2006 
  10. A. Jain, K. Nandakumar and A. Ross "Score normalization in multimodal biometric systems" Pattern Recognition Letters, Vol. 38, pp. 2270-2285, 2005 
  11. S. Y. Han, H. A. Park, D. H. Cho and K. R. Park "Face recognition Based on Near-Infrared Light using Mobile Phones" Lecture Notes in Computer Science (ICANNGA), Vol.4432, pp440-448, 2007 
  12. 박현애, 박강령, "휴대폰에서의 홍채인식을 위한 고속 홍채검출에 관한 연구", 대한전자공학회 논문지, 제 43권 SP편 제 2 호, pp. 19-29, 2006년 3월 
  13. W. H. Liao and D. Y. Li "Homomorphic Processing Technologies for Near-Infrared Images" Proceedings of ICASSP, Vol. 3, pp. 461-464, 2003 
  14. D. H. Cho, K. R. Park, D. W. Rhee, Y. G. Kim and J. H. Yang "Pupil and Iris Localization for Iris Recognition in Mobile Phones" SNPD, Las Vegas, Nevada, USA, 2006 
  15. 장영균, 강병준, 박강령, "홍채 인식을 위한 포물 허프 변환 기반 눈꺼풀 영역 검출 알고리즘", 대한전자공학회 논문지, 제 44권 SP편 제01호, pp. 94-104, 2007년 1월 
  16. B. J. Kang and K. R. Park "A Robust Eyelash Detection Based on Iris Focus Assessment" Pattern Recognition Letters, Vol. 28, Issue 13, pp. 1630-1639, 2007 
  17. 양희성, 김유호, 이준호, "조명 변화, 얼굴 표정 변화에 강인한 얼굴 인식 방법," 정보과학회논문지: 소프트웨어 및 응용, 제 28권, 제 2호, pp. 192-200, 2001 
  18. R. O. Duda, P. E. Hart and D. G. Stork "Pattern Classification" 2nd, pp. 259-265, 2001 
  19. www.samsung.co.kr (accessed on 2008.02.25) 
  20. J. G. Daugman "How Iris Recognition Works" IEEE Trans. on Circuits and Systems for Video Technology, Vol. 14, No. 1, pp. 21-30, 2004 
  21. Yong Wang and Jiuqiang Han "Iris Recognition Using Support Vector Machines" LNCS on ISNN2004, pp. 622-628, 2004 
  22. Kaushik Roy and Prabir Bhattacharya "Iris Recognition with Support Vector Machines" LNCS on ICB06, 3832, pp. 486-492, 2006 
  23. Kang Ryoung Park, Hyun-Ae Park, Byung Jun Kang, Eui Chul Lee, Dae Sik Jeong, "A Study on Iris Localization and Recognition on Mobile Phone", Eurasip Journal on Advances in Signal Processing, Volume 2008 (2008), pp. 1-12, November 2007 
  24. Vytautas Perlibakas, "Distance measures for PCA-based face recognition," Pattern Recognition Letters, Vol. 25, Issue 6, pp. 711-724, 2004 
  25. Song-yi Han, Kang Ryoung Park, "Multi-modal Face and Iris Recognition using Mobile Phones based on a Hierarchical SVM", Pattern Recognition Letters, Submitted 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일