$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

A mapping f : $M{\rightarrow}N$ between Hilbert $C^*$-modules approximately preserves the inner product if $$\parallel<f(x),\;f(y)>-<x,y>\parallel\leq\varphi(x,y)$$ for an appropriate control function $\varphi(x,y)$ and all x, y $\in$ M. In this paper, we extend some results concerning the stability of the orthogonality equation to the framework of Hilbert $C^*$-modules on more general restricted domains. In particular, we investigate some asymptotic behavior and the Hyers-Ulam-Rassias stability of the orthogonality equation.

참고문헌 (26)

  1. M. Amyari, Stability of C*-inner products, J. Math. Anal. Appl. 322 (2006), 214-218 
  2. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66 
  3. C. Baak, H. Chu, and M. S. Moslehian, On the Cauchy-Rassias inequality and linear n-inner product preserving mappings, Math. Inequal. Appl. 9 (2006), no. 3, 453-464 
  4. R. Badora and J. Chmieli'nski, Decomposition of mappings approximately inner product preserving, Nonlinear Anal. 62 (2005), no. 6, 1015-1023 
  5. J. Chmielinski, On a singular case in the Hyers-Ulam-Rassias stability of the Wigner equation, J. Math. Anal. Appl. 289 (2004), no. 2, 571-583 
  6. S. Czerwik, Functional equations and inequalities in several variables, World Scientific Publishing Co., Inc., River Edge, NJ, 2002 
  7. G. L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), no. 1-2, 143-190 
  8. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224 
  9. D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of functional equations in several variables, Progress in Nonlinear Differential Equations and their Applications, 34. Birkhauser Boston, Inc., Boston, MA, 1998 
  10. D. H. Hyers, G. Isac, and Th. M. Rassias, On the asymptoticity aspect of Hyers-Ulam stability of mappings, Proc. Amer. Math. Soc. 126 (1998), no. 2, 425-430 
  11. D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), no. 2-3, 125-153 
  12. G. Isac and Th. M. Rassias, On the Hyers-Ulam stability of $\psi$-additive mappings, J. Approx. Theory 72 (1993), no. 2, 131-137 
  13. S.-M. Jung, Hyers-Ulam-Rassias stability of functional equations in mathematical analysis, Hadronic Press, Inc., Palm Harbor, FL, 2001 
  14. I. Kaplansky, Modules over operator algebras, Amer. J. Math. 75 (1953), 839-858 
  15. E. C. Lance, Hilbert C*-Modules, LMS Lecture Note Series 210, Cambridge Univ. Press, 1995 
  16. V. M. Manuilov and E. V. Troitsky, Hilbert C*-modules, Translations of Mathematical Monographs, 226. American Mathematical Society, Providence, RI, 2005 
  17. M. S. Moslehian, Asymptotic behavior of the extended Jensen equation, Studia Sci. Math. Hungar (to appear) 
  18. J. G. Murphy, C*-algebras and operator theory, Academic Press, Inc., Boston, MA, 1990 
  19. W. L. Paschke, Inner product modules over B*-algebras, Trans. Amer. Math. Soc. 182 (1973), 443-468 
  20. Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), no. 1, 23-130 
  21. Th. M. Rassias, Stability of the Generalized Orthogonality Functional Equation, Inner product spaces and applications, 219-240, Pitman Res. Notes Math. Ser., 376, Longman, Harlow, 1997 
  22. M. A. Rieffel, Induced representations of C*-algebras, Advances in Math. 13 (1974), 176-257 
  23. S. M. Ulam, Problems in Modern Mathematics, Science Editions John Wiley & Sons, Inc., New York 1964 
  24. J. Chmielinski and S.-M. Jung, The stability of the Wigner equation on a restricted domain, J. Math. Anal. Appl. 254 (2001), no. 1, 309-320 
  25. Th. M. Rassias, A new generalization of a theorem of Jung for the orthogonality equation, Appl. Anal. 81 (2002), no. 1, 163-177 
  26. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일