$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

초록

다비작물이면서 재배기간이 긴 고추 재배지에서 당년의 효과를 기대하고 시용되는 유기물은 각 지역마다 사용되는 종류가 다양함으로 이들이 토양 미생물 상에 미치는 효과를 검토할 필요가 있다. 본 연구에서는 우리나라에서 쉽게 구할 수 있는 수피, 우분, 왕겨, 볏짚과 이것으로 만든 퇴비가 토양의 화학적 미생물적 특성에 미치는 효과를 분석하였다. 퇴비가 pH를 포함한 토양 화학적 특성 변화에 가장 효과적이었고 수피는 유기물 증가에 기여하였다. 인지질 지방산의 토양 생물학적 지표 분석에서 퇴비는 방선균과 균근균 밀도 증가에 효과적이었으며, y19:0/18:1w7c와 단불포화/포화 지방산의 비율도 증가시켰다. 수피는 곰팡이 밀도 증가에 효과적이었고, 왕겨와 볏짚은 퇴비와 수피 만큼의 토양 미생물상 군락에 미치는 효과는 적었으나 왕겨가 볏짚 보다 컸다. 그리고 전체 미생물 상을 관찰하기 위하여 PLFA와 Biolog EcoPlate 성적을 주요인 분석으로 살펴 본 결과 수피가 두 가지 방법 모두에서 다른 처리 특히 퇴비 처리구와는 구별 되는 미생물 군을 형성함을 보여주었다. 따라서퇴비와 수피가 토양의 화학적 특성과 미생물상 변화에 가장 큰 영향을 미쳤고, 특히 토양 미생물상에 미치는 두 유기 토양 개량제의 영향은 방향이 크게 다르므로 신선 수피의 토양 개량제로의 이용은 더 많은검토가 필요한 것으로 사료된다.

Abstract

Diverse organic amendments available in local areas have been used to improve soil quality in red pepper field and so the need for investigating the soil chemical and biological properties changed by the organic amendments application is increasing. Soil microbial diversities were measured by phospholipid fatty acid (PLFA) and Biolog $EcoPlate^{TM}$. Compost was most effective for improving soil chemical properties including pH, EC, total nitrogen, P, K, and Ca, and bark increased soil organic matter significantly (P=0.05). Compost increased the fatty acids indicating actinomycetes and vascular arbuscular fungi, and ratio of cy19:0/18:1w7c and monounsaturated fatty acids/saturated fatty acids in soils in PLFA analysis. Bark increased soil fungal indicators in PLFA analysis (P=0.05). Principal component analysis of Biolog EcoPlate data and PLFA differentiated the compost- and bark-amended soils from other organic matteramended soils especially the soil incorporated with compost. More researches are needed to use bark for improving soil microbial properties because the soil chemical and microbiological properties caused by compost and bark are significantly different.

참고문헌 (36)

  1. Borga, P., M. Nilsson, and A. Tunlid. 1994. Bacterial communities in peat in relation to botanical composition as revealed by phospholipid fatty-acid analysis. Soil Biol. Biochem. 26:841-848. 
  2. Bossio, D.A. and K.M. Scow. 1998. Impacts of carbon and flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns. Microb. Ecol. 35:265-278. 
  3. Carrera, L.M., J.S. Buyer, B. Vinyard, A.A. Abdul-Baki, L.J. Sikora, and J.R. Teasdale. 2007. Effects of cover crops, compost, and manure amendments on soil microbial community structure in tomato production systems. Appl. Soil Ecol. 37:247-255. 
  4. Gasser, M.O., A. Ndayegamiye, and M.R. Laverdiere. 1995. Shortterm effects of crop rotations and wood-residue amendments on potato yields and soil properties of a sandy loam soil. Can. J. Soil Sci. 75:385-390. 
  5. Gomez, E., L. Ferreras, and S. Toresani. 2006. Soil bacterial functional diversity as influenced by organic amendment application. Bioresource Technol. 97:1484-1489. 
  6. Grigera, M.S., R.A. Drijber, K.M. Eskridge, and B.J. Wienhold. 2006. Soil microbial biomass relationships with organic matter fractions in a Nebraska corn field mapped using apparent electrical conductivity. Soil Sci. Soc. Am. J. 70:1480-1488. 
  7. Khan, A.U.H., M. Iqbal, and K.R. Islam. 2007. Dairy manure and tillage effects on soil fertility and corn yields. Bioresource Technol. 98:1972-1979. 
  8. Li, W.H., C.B. Zhang, H.B. Jiang, G.R. Xin, and Z.Y. Yang. 2006. Changes in soil microbial community associated with invasion of the exotic weed, Mikania micrantha HBK. Plant Soil 281:309-324. 
  9. Ludvigsen, L., H.J. Albrechtsen, H. Holst, and T.H. Christensen. 1997. Correlating phospholipid fatty acids (PLFA) in a landfill leachate polluted aquifer with biogeochemical factors by multivariate statistical methods. FEMS Microbiol. Rev. 20:447-460. 
  10. Olsson, P.A., E. Baath, and I. Jakobsen. 1997. Phosphorus effects on the mycelium and storage structures of an arbuscular mycorrhizal fungus as studied in the soil and roots by analysis of fatty acid signatures. Appl. Environ. Microb. 63:3531-3538. 
  11. Calbrix, R.L., S. Barray, O. Chabrerie, L. Fourrie, and K. Laval. 2007. Impact of organic amendments on the dynamics of soil microbial biomass and bacterial communities in cultivated land. Appl. Soil Ecol. 35:511-522. 
  12. Grayston, S.J., C.D. Campbell, R.D. Bardgett, J.L. Mawdsley, C.D. Clegg, K. Ritz, B.S. Griffiths, J.S. Rodwell, S.J. Edwards, W.J. Davies, D.J. Elston, and P. Millard. 2004. Assessing shifts in microbial community structure across a range of grasslands of differing management intensity using CLPP, PLFA and community DNA techniques. Appl. Soil Ecol. 25:63-84. 
  13. Nilsson, L.O., E. Baath, U. Falkengren-Grerup, and H. Wallander. 2007. Growth of ectomycorrhizal mycelia and composition of soil microbial communities in oak forest soils along a nitrogen deposition gradient. Oecologia 153:375-384. 
  14. Iyyemperumal, K. and W. Shi. 2007. Soil microbial community composition and structure: residual effects of contrasting N fertilization of swine lagoon effluent versus ammonium nitrate. Plant Soil 292:233-242. 
  15. Trois, C. and A. Polster. 2007. Effective pine bark composting with the Dome Aeration Technology. Waste Manage 27:96-105. 
  16. Fierer, N., J.P. Schimel, and P.A. Holden. 2003. Variations in microbial community composition through two soil depth profiles. Soil Biol. Biochem. 35:167-176. 
  17. Garland, J.L. 1996. Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil Biol. Biochem. 28:213-221. 
  18. Peacock, A.D., M.D. Mullen, D.B. Ringelberg, D.D. Tyler, D.B. Hedrick, P.M. Gale, and D.C. White. 2001. Soil microbial community responses to dairy manure or ammonium nitrate applications. Soil Biol. Biochem. 33:1011-1019. 
  19. Tambone, F., P. Genevini, and F. Adani. 2007. The effects of shortterm compost application on soil chemical properties and on nutritional status of maize plant. Compost Sci. Util. 15:176-183. 
  20. Frostegard, A. and E. Baath. 1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fert. Soils 22:59-65. 
  21. Bardgett, R.D., P.J. Hobbs, and A. Frostegard. 1996. Changes in soil fungal:bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biol. Fert. Soils 22:261-264. 
  22. Boyle, S.A., R.R. Yarwood, P.J. Bottomley, and D.D. Myrold. 2008. Bacterial and fungal contributions to soil nitrogen cycling under Douglas fir and red alder at two sites in Oregon. Soil Biol. Biochem. 40:443-451. 
  23. Kaur, A., A. Chaudhary, R. Choudhary, and R. Kaushik. 2005. Phospholipid fatty acid - A bioindicator of environment monitoring and assessment in soil ecosystem. Curr. Sci. India 89:1103-1112. 
  24. Ros, M., J.A. Pascual, C. Garcia, M.T. Hernandez, and H. Insam. 2006. Hydrolase activities, microbial biomass and bacterial community in a soil after long-term amendment with different composts. Soil Biol. Biochem. 38:3443-3452. 
  25. Demoling, F., L.O. Nilsson, and E. Baath. 2008. Bacterial and fungal response to nitrogen fertilization in three coniferous forest soils. Soil Biol. Biochem. 40:370-379. 
  26. Bardgett, R.D. and E. McAlister. 1999. The measurement of soil fungal : bacterial biomass ratios as an indicator of ecosystem selfregulation in temperate meadow grasslands. Biol. Fert. Soils 29:282-290. 
  27. Chang, C.Y., C.C. Chao, and W.L. Chao. 2008. Community structure and functional diversity of indigenous fluorescent Pseudomonas of long-term swine compost applied maize rhizosphere. Soil Biol. Biochem. 40:495-504 
  28. Stark, C., L.M. Condron, A. Stewart, H.J. Di, and M. O'Callaghan. 2007. Influence of organic and mineral amendments on microbial soil properties and processes. Appl. Soil Ecol. 35:79-93. 
  29. Bossio, D.A., K.M. Scow, N. Gunapala, and K.J. Graham. 1998. Determinants of soil microbial communities: Effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microb. Ecol. 36:1-12. 
  30. Clegg, C.D. 2006. Impact of cattle grazing and inorganic fertiliser additions to managed grasslands on the microbial community composition of soils. Appl. Soil Ecol. 31:73-82. 
  31. Larkin, R.P., C.W. Honeycutt, and T.S. Griffin. 2006. Effect of swine and dairy manure amendments on microbial communities in three soils as influenced by environmental conditions. Biol. Fert. Soils 43:51-61. 
  32. Mupondi, L.T., P.N.S. Mnkeni, and M.O. Brutsch. 2006. Evaluation of pine bark or pine bark with goat manure or sewage sludge cocomposts as growing media for vegetable seedlings. Compost Sci. Util. 14:238-243. 
  33. Yao, H., Z. He, M.J. Wilson, and C.D. Campbell. 2000. Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microb. Ecol. 40:223-237. 
  34. Chang, E.H., R.S. Chung, and Y.H. Tsai. 2007. Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population. Soil Sci. Plant Nutr. 53:132-140. 
  35. Institute of Agricultural Science. 1988. Methodology of soil chemical analysis. Rural Development Administration. pp26-114. 
  36. Park, S.J., M.H. Kim, and H.M. Shin. 2005. Agricultural process and food engineering : physical properties of rice husk. J. Biosyst. Eng. 30:229-234. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일