$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

인삼 재배 예정지의 Arbuscular 균근균(AMF) 번식체 밀도 향상

Improvement of Arbuscular Mycorrhizal Fungi(AMF) Propagule at the Preplanting Field for Ginseng Cultivation

초록

대학 부속농장의 밭 토양을 선정하여 토양 중 AMF 밀도 향상과 토양 물리성 개선을 위하여 기주작물로서 겨울작물인 보리와 호밀, 여름작물인 수단그라스와 콩을 재배하는 작부체계 유형별로 AMF 밀도 변화와 토양특성을 조사하였다. 재배작물의 생산량은 겨울작물 중 호밀을 재배한 포장 ($3,045kg\;10a^{-1}$)이 가장 높았으며, 호밀 재배 후 여름작물 중 수단그라스를 재배한 포장 ($2,757kg\;10a^{-1}$)과 보리를 재배한 후 콩을 재배한 포장 ($1,628kg\;10a^{-1}$) 순으로 건물 생산량을 보였다. 유기물 함량에서는 큰 변화는 인정되지 않았으나 입단화율은 보리를 재배한 포장이 45.7%, 호밀을 재배한 후 수단그라스를 재배한 포장에서 45.1%로 높아졌다. 포자밀도는 겨울작물을 재배한 포장이 전체적으로 증가하는 경향을 보였고, 여름작물은 수단그라스를 재배한 포장에서 건토 1 g당 64개로 콩을 재배한 포장보다 증가하였다. AMF 외생균사 길이는 겨울작물이 건토 1 g당 1.5~2.0 m 수준이었으며, 여름작물은 수단그라스를 재배한 포장이 건토 1 g당 2.6~2.9 m, 콩을 재배한 포장이 건토 1 g당 1.7~2.2 m 수준으로 대조구보다 높게 나타났다. 토양 중 Glomalin 함량은 작물을 재배한 포장이 대조구보다 높은 함량을 나타내었다. 그 중에서도 보리를 재배한 후 이어 콩을 재배한 포장에서 건토 1 g당 1.7 mg로 가장 높게 나타났다. 이상의 결과에서 인삼 재배 예정지의 토양관리를 위한 작부체계는 겨울작물의 보리를 재배한 다음 여름작물의 수단그라스를 재배하는 유형이 AMF 포자밀도 향상과 토양 물리성 개선에 효과적인 것으로 밝혀졌다.

Abstract

This study was carried out to improve density of arbuscular mycorrhizal fungi (AMF) propagule and physiochemical properties of soil by planting crops at the preplanning field for ginseng cultivation. Winter crops, such as barley and rye and summer crops, such as sudangrass and soybean were cultivated in combination to improve AMF propagation and soil aggregation at the fields. Yield of harvested crops by plating with winter or/and summer crops was $3,045kg\;10a^{-1}$ of the only rye cultivation, $2,757kg\;10a^{-1}$ of sudangrass cultivation in combination with rye growing (rye/sudangrass) and $1,628kg\;10a^{-1}$ of soybean cultivation in combination with barley growing (barley/soybean), respectively. Soil aggregation rate was improved by cultivation with barley (45.7%) and with rye/sudangrass (45.1%), respectively. The density of AMF spores in soil was increased slowly by cultivating with winter crops. In summer crops cultivation system, density of AMF spores at sudangrass cultivated field was $64.0spores\;g^{-1}$ dried soil and it was higher than that at soybean cultivated field. External hyphae length (EHL) was $1.5{\sim}2.0m\;g^{-1}$ air-dried soil at winter crops cultivated field. However, in summer crops cultivation systems, EHL was $2.6{\sim}2.9m\;g^{-1}$ airdried soil at sudangrass cultivated field and was $1.7{\sim}2.2m\;g^{-1}$ air-dried soil at soybean cultivated filed, showing these were higher than those in non-cultivated field (control). Glomalin content of soil cultivated with crops was higher than that of control soil. Especially, the highest glomalin content was shown to $1.7m\;g^{-1}$ air-dried soil in the barley/soybean cultivation systems. These results suggested that the most effective soil management to improve AMF propagule density and soil physical properties by planting crops system was cultivating sudangrass followed by barley at the preplanning fields for ginseng cultivation.

참고문헌 (23)

  1. Abbott, L.K., and A.D. Robson. 1984. The effect of VA mycorrhizae on plant growth. In:VA mycorrhiza(eds. C.L. Powell & D.J. Baagyaraj). CRC Press. Boca Raton. p. 113-130. 
  2. Hujiwara, S., T. Anzai, and T. Kato. 1996. Method of soil diagnosis and its utilization. p. 255. 
  3. Kapulnik, Y., and D.D. Douds, Jr. 2000. Arbuscular Mycorrhizas: Physiology and Function. Kluwer Academic Publishers. pp.372. 
  4. Li, T.S.C. 1995. Effect of Vesicular-arbuscular mycorrhizae on the growth of American Ginseng. Korean J. Ginseng 19:73-76. 
  5. Tennant, D. 1975. A test of a modified line intersection method of measuring root length. J. of Ecol. 63:995-1001. 
  6. Bradford, M.M. 1976. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. 
  7. Brundrett, M., R.L. Peterson, L. Melville, H. Addy, T.P. McGonigle, G. Schaffer, N. Bougher, H. Massicotte. 1994. Practical methods in mycorrhiza research. mycologue Publication. p. 161. 
  8. Wright, S.F., and A. Upadhyaya. 1998. A survey of soils for aggregate stability and glomalin, a glycoproteins produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil 198:97-107. 
  9. Rural Development Administration. 1989. Method of soil chemical analysis. RDA, Suwon, Korea. 
  10. Tisdall, J.M. 1991. Fungal hyphae and structural stability of soil. Aust. J. Soil Res. 29:729-743. 
  11. Wright, S.F., and A. Upadhyaya. 1996. Extraction of an abundant and unusual protein from soil and comparison with hyhal protein from arbuscular mycorrhizal fungi. Soil Sci. 161:575-585. 
  12. Wright, S.F., M. Franke-Snyder, J.B. Morton, and A. Upadhyaya. 1996. Time-cource study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant and Soil, 181:193-203. 
  13. Azcon-Aguilar, C., J.M. Barea, 1994. Interactions between Mycorrhizal Fungi and Other Rhizosphere Microorganisms. In: Allen, M.A.(Ed.), Mycorrhizal Functioning: An Integrative Plantfungus Process. Chapman and Hall, London, p. 163-198. 
  14. Degens, B.P., G.P. Sparling, and L.K. Abbott. 1996. Increasing the lenght of hyphae in a sandy soil increases the amount of waterstable aggregates. Appl. Soil Ecol. 3:149-159. 
  15. Wright, S.F., J.B. Morton, and J.E. Sworobuk. 1987. Identification of a vesicular-arbuscular mycorrhizal fungus by using monoclonal antibodies in an enzyme-linked immunosorbent assay. Appl. Environ. Microbiol. 53:2222-2225. 
  16. McGonigle, T.P., J.P. Hovius, and R.L. Peterson. 1999. Arbuscular mycorrhizae of American ginseng(Panax quinquefolius) in cultivated field plots : Plant age affects the development of a colonization lag phase, Can. J. Bot. 77:1028-1034. 
  17. Miller, R.M., and J.D. Jastrow. 1992. The role of mycorrhizal fungi in soil conservation, pp. 29-44. In : G.J. Bethlenfalvay and R.G. Linderman (eds.), Mycorrhizae in Sustainable Agriculture. ASA Special Publication No. 54, American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, Wisconsin. 
  18. Jastrow, J.D., R.M. Miller, and J. Lussenhop. 1998. Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biol. Biochem. 30:905-916. 
  19. Phillips, J.M., and D.S. Hayman. 1970. Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society. 55:158-160. 
  20. Zeuske, D., and H.C. Weber. 2000. Growth stimulation of Panax ginseng C.A. Meyer (Araliaceae) arising from AMF-isolate inoculation. Symbiosis 29:213-230. 
  21. Hooker, J.E., M. Jaizme-Veaga, and D. Atkinson. 1994. Biocontrol of plant pathogens using arbuscular mycorrhizal fungi. In : Impact of arbuscular mycrrhizas on sustainable Agriculture and Natural Ecosystems (eds S. Gianinazzi and H. Schuepp). Birkhauser, Basel, Switzerland. p. 191-200. 
  22. Kim D. J. 2000. Ginseng cultivation. Woori publication. pp. 219. 
  23. Daniels, B.A. and H.A. Skipper. 1982. Methods for the recovery and quantitative estimation of propagules from soil. Pages 29-35 In N. C. Schenck, editor. methods and principles of mycorrhizal research. American Phytopathological Society, St. Paul, Minn. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

DOI 인용 스타일