$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

제주도 화산회토양에서 Ni, Cu 및 Zn의 자연함유량 특성

Characteristics of Natural Pedo-geochemical Background for Ni, Cu and Zn in Volcanic Soils of Jeju

초록

본 연구는 제주지역 토양에서 Ni 함량이 높은 원인을 밝히고 인위적인 함량증가가 우려되는 Cu와 Zn의 함량 특성을 구명하기 위해 수행되었다. 토양시료는 Alfisols 4개통, Andisols 35개통, Endisols 9개통, Inceptisols 16개통, Ultisols 1개통에서 채취하였으며, 동일한 지점에서 모암(자갈) 시료를 채취하였다. 토양색별 Ni, Cu 및 Zn의 함량은 통계적인 유의성은 보이지 않았으나 Ni 평균함량은 $79.2mg\;kg^{-1}$으로 토양색으로 분류한 토양별 평균함량이 토양오염우려기준을 초과하였다. Cu 함량은 $40mg\;kg^{-1}$ 내외, Zn은 $108mg\;kg^{-1}$ 내외로 토양오염우려기준에 비해 낮았으며, 토양색간 함량 차이가 크지 않았다. 토양목별 Ni 함량은 Entisols에서 특이하게 높았으며, 그 외의 토양목에서는 비슷한 함량을 보였다. Cu와 Zn은 토양목과 무관하게 비슷한 경향을 나타내었다. Ni 함량이 많은 암석은 성산층, 신더어콘 및 침상장석 감람석현무암에서 높았으며, 장석현무암 및 조면질 안산암에서 낮았다. Ni은 경작지에 비해 비경작지 함량이 높았으나, Cu와 Zn 함량은 비경작지에 비해 경작지에서 높은 현상이 뚜렷하였다. Ni은 총 시료 중에서 표토/심토 비가 1보다 낮은 토양이 대부분이었으나 Cu와 Zn은 전함량의 표토/심토 비는 1보다 높은 토양이 많아 인위적인 요인에 의해 표토에 Cu가 집적되는 것으로 보인다.

Abstract

This study was carried out to find out causes of high Ni content and characteristics of potential increase of Cu and Zn contents in the soils of Jeju area. Soil samples were collected from 4 series of Alfisols, 35 series of Andisols, 9 series of Entisols, 16 series of Inceptisols, and 1 series of Ultisols, respectively. Parent material (gravel) samples were also collected from the same sites where soil samples were taken. Both soil and parent material samples were analyzed for Ni, Cu, and Zn. The average Ni content of all the soil samples was $79.2mg\;kg^{-1}$, which was exceeded warning standard for Ni against the Soil Conservation Act in Korea, whereas that of Cu and Zn contents were lower than the warning standard for Cu and Zn. The difference of Ni, Cu and Zn content was not consistent depending upon soil color. Ni content in the soil samples from Entisols was particularly high, whereas that from the other soil orders was similar to each other. Cu and Zn contents in the soil samples were similar regardless of the difference in soil order. Ni content in Seongsan Formation(SSF), Cinder cone(C) and acicular Feldspar Olivine Basalt(FOB) was high, while that in Feldspar Basalt(FB) and Trachy Andesite lava(TA) was low. Ni content in the non-agricultural land was higher compared with that in the agricultural land, whereas Cu and Zn contents in the non-agricultural land were significantly lower than that of agricultural land. The topsoil/subsoil ratios for Ni content in most of the soil samples were less than 1, while that for total contents of Cu and Zn in many of the soil samples were larger than 1 indicating potential Cu and Zn accumulation in topsoil by artificial reasons.

참고문헌 (20)

  1. Hea, Z. L., X. E. Yanga, and P. J. Stoffella. 2005. Trace elements in agroecosystems and impacts on the environment. J. of Trace Elements in Medicine and Biology 19 : 125-140. 
  2. Italian Ministry of the Environment. 1999. Regolamento recantecriteri, procedure e modalita per la messa in sicurezza la bonifica e il ripristino ambientale dei siti inquint, ai sensi dell'articolo 17 del decreto legislativo 5/21997, n. 22, e successive modificazioni e integrazioni. Gazzetta Ufficiale deila Repubblica Italiana 471, 67. 
  3. Jung, G. B., K. Y. Jung, G. H. Cho, B. K. Jung, and K. S. Kim. 1998. Heavy metal contents in soils and vegetables in the plastic house. J. korean Soc. Soil Sci. Fert 30 : 152-160. 
  4. Jung, G. B., W. I. Kim, J. S. Lee, J. D. Shin, J. H. Kim, and S. G. Yun. 2004. Assessment on the Content of Heavy Metal in Orchard Soils in Middle Part of Korea. Korean Journal of Environmental Agriculture. 23(1) : 15-21. 
  5. U.S.A. EPA. 1996. Microwave assisted acid digestion of sediments, sludge, soils and oils. Method 3051. 
  6. Emmanuel D., H. S. Macary, and V. van de Kerchove. 2006. Sources of very high heavy metal content in soils of volcanic island(La Reunion). J. of geochemical Exploration 88 : p194-197. 
  7. Jung, K. Y., S. I. Kwon, G. B. Jung, W. I. Kim, and Y. G. Jeong. 1997. Effect of long term application of sewage shudge on distribution and availability of heavy metals in soil-plant system. Fourth International Conference, East and Southeast Asia Fertilizer of Soil Science Societies. 335-347. 
  8. Jung, G. B., W. I. Kim, and G. S. Hyeon. 2000. Studies on the distribution of background concentrations of heavy metal of soils in Korea. Annual Report Dept. of Agro-Environment, NIAST. p24-31. 
  9. National Institute of Agricultural Science and Technology(NIAST). 2000. Taxonomical Classification of Korean Soils. RDA. Korea. 
  10. Ma, L. Q., F. Tan, and W. G. Harris. 1997. Concentrations and distribution of eleven metals in Florida soils. J. Environ. Qual. 26 : 769-775. 
  11. Paola A., F. T. Laurence Denaix, and Z. Mariavittoria. 2003. Characterization of heavy metals in contaminated volcanic soils of the Solofrana river valley(southern Italy). Geoderma. 117 : 347-366. 
  12. Takeda, A., K. kimura, and S. Yamasaki. 2004. Analysis of 57 Elements in Japanese Soils, with Special Reference to Soil Group and Agriculture Use, Geoderma. 119 : 291-307. 
  13. Kabata-Pendias, A. and H. Pendias. 2001. Trace Elements in Soils and Plants. CRC Press, Boca Raton, Fla. 413. 
  14. Choi, I. S., J. Y. Park, and J. M. Oh. 2002. The Distribution Characteristics of Heavy Metals at Field and Upland Soils. J. Korean Earth Science Society 23 : 406-415. 
  15. Burt, R., M. A. Wilson, M. D. Mays, and C.W. Lee. 2003. Major and Trace Elements of Selected Pedons in the USA. J. Environ. Qual., 32 : 2109-2121. 
  16. Ahn, J. S., C. M. Chon, K. Y. Kim, K. S. Ko, and K. H. Park. 2006. Geochemical Characteristics and Heavy Metal Distribution in Selected Volcanic Ash Soils in Jeju Island. The Korean Society for Geosystem Engineering. 43(6) : 602-614. 
  17. Anderson, M. K, A. Refsgaard, K, Raulund-Rasmussem, B. W. Strobel, and C. B. Hansen. 2002. Content, distribution, and solubility of cadmium in arable and forest soils. Soil Soc. Am. J. 66 : 1829-1835. 
  18. Song, K. C., S. J. Jung, B. K. Hyun, Y. K. Sonn, and H. K. Kwak. 2005. Characteristics and classification system of Korean soils. p 35-107. in Achievement and development plan for soil survey program in Korea. RDA, Suwon, Korea. 
  19. National Institute of Agricultural Science and Technology(NIAST). 1976. Detailed soil map(Chejudo). 
  20. Shin, J. S. and G. Stoops. 1988. Composition and Genesis of Volcanic Ash Soils in Jeju Island. I. Physico-Chemical and Macro- Micromorpholoical Propertis. The Mineralogical Society of Korea(1) : 32-39. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

DOI 인용 스타일