$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

북동태평양 대한민국 광구 KR1, 2, 5 지역 표층 퇴적물의 물리적 특성 비교

Physical Properties of Surface Sediments of the KR(Korea Reserved) 1, 2, and 5 Areas, Northeastern Equatorial Pacific

바다 : 한국해양학회지 v.13 no.3 , 2008년, pp.168 - 177  
초록

망간단괴를 상업적으로 개발하기 위해 고려할 사항은 망간단괴의 부존량과 금속함량 외에 채광기의 주행성과 채광시 발생하는 환경충격의 최소화를 들 수 있다. 특히 환경충격의 최소화를 위해 우선 채광지역의 해저면 특성을 이해하는 것은 필수적이다. 해저면의 특성 중 해저퇴적물의 물리적 특성과 전단강도는 주행성과 환경변화를 예측하는 중요한 기준이 된다. 이들 특성을 파악하기 위하여 2004년부터 2006년 사이에 북동태평양 클라리온-클리퍼톤 균열대의 대한민국 광구에서 채취한 주상시료 퇴적물의 함수율, 입도, 밀도, 공극률 및 전단강도를 분석하였다. 분석결과, 퇴적물의 물리적인 특성은 경도 변화에 따른 동서간의 차이(KR1과 KR2 차이)보다 위도 변화에 따른 남북간의 차이(KR1 또는 KR2와 KR5 차이)가 뚜렷한 것으로 나타났다. 남쪽 지역의 함수율, 공극비, 공극률은 북쪽 지역보다 높게 나타난 반면에 입자밀도는 남쪽 지역이 북쪽 지역에 비해서 상대적으로 낮게 나타났다. 퇴적물 주상시료의 전단강도는 $0{\sim}10$ cm에서 북쪽 지역이 조금 높지만 10 cm 하부의 깊이에서는 남쪽지역이 뚜렷이 높게 나타났다. 또한 채광기의 정상주행에 필요한 전단강도를 5 kPa라고 가정하면 KR1, KR2, KR5 지역에서 평균적으로 5 kPa에 도달하는 깊이는 각각 18, 13, 10 cm로 나타났다. 채광기가 정상 주행하는 동안 같은 부피의 퇴적물이 교란된다면 함수율이 높은 퇴적물에서 교란되는 퇴적물의 양이 적을 것이다. 또한 채광기의 정상주행에 필요한 전단강도에 도달하는 퇴적층의 깊이가 얕을수록 교란되는 퇴적물의 부피가 작을 것으로 예상된다. 따라서 채광작업은 연구지역 중에서 함수율이 높고 10 cm 하부의 전단강도가 큰 남쪽 지역이 북쪽지역에 비해 유리할 것으로 판단된다.

Abstract

Trafficablility of a miner and potential environmental impacts due to mining activities should be considered in the selection of a commercial manganese nodule mining site. These two factors can be evaluated comparatively with physical properties and shear strength of sea-bed sediments. For the qualitative comparison of potential minig sites in terms of these two factors, physical properties such as water contents, void ratios, porosities, and grain densities, and shear strengths of surface sediments were determined for the three potential manganese nodule mining sites(KR1, KR2, and KR5) in the Korean manganese nodule contract area, northeast Pacific. For the study, sediment samples were collected from 107 stations from 2004 to 2006. The physical properties of surface sediments showed more significant differences between northern(KR1, KR2) and southern(KR5) blocks than between northern blocks(KR1 vs. KR2). Water content, void ratio, and porosity of sediments from KR5 were relatively higher than those from KR1 and KR2. Grain density of sediments from KR5 was relatively lower than those from KR1 and KR2. Shear strengths of the top 10cm sediments were higher in KR1 and KR2, whereas those of the deeper part were highest in KR5 block. Generally, sediments of high water contents are less suspendible than those of the low water contents by benthic disturbances, thus less disturbance is expected in the sediments of high water content by mining activities. In terms of trafficability, the shear strength of sediment below 10 cm deep is more important than shallower part because miner will disturb at least top 10 cm interval of the surface sediments. Base on these results, we conclude that KR5 area will be the best site for commercial mining among three investigated sites in this study.

참고문헌 (37)

  1. 지상범, 형기성, 김종욱, 김현섭, 이근창, 손승규, 2003. 북동태평양 클라리온-클리퍼톤 균열대 KODOS 지역 심해저 퇴적물의 지질공학적 특성에 따른 유형분류. Ocean and Polar Res., 25(4): 529−543 
  2. Anonymous, 1987. Delineation of mine-sites and potential in different areas. Seabed mineral series, United Nations Ocean Economics and Technology Branch, pp. 4-79 
  3. Foell, E. J., H. Thiel, and G. Schriever, 1990. DISCOL: A long-term, large-scale, disturbance-recolonization experiment in the abyssal eastern tropical Pacific Ocean. Proc. Offshore Technology Conference. Houston, USA, OTC 6328. pp. 497−503 
  4. Grupe, B., H.J. Becker, and H.U. Oebius, 2001. Geotechnical and sedimentological investigations of deep-sea sediments from a manganese nodule field of the Peru Basin. Deep-Sea Res. II, 48: 3593-3608 
  5. Inderbitzen, A.L., 1970. Empirical relationships between mass physical properties for recent marine sediments off Southern California. Mar. Geol., 9: 311-329 
  6. Radzeijewska, T., 1997. Immediate responses of benthic meio- and megafauna to disturbance caused by polymetallic nodule miner simulator. Proc. of Int. Symposium Environmental Studies for Deepsea Mining, Metal Mining Mineral Agency of Japan, Tokyo, Japan, pp. 223-236 
  7. Sharma, R., 1993. Quantitative estimation of seafloor features from photographs and their application to nodule mining. Marine Georesources and Geotechnology, 11: 311-331 
  8. Taguchi, K., K. Nakata, and S. Aoki, 1995. Environmental study on the Deep-Sea mining of manganese nodules in the northeastern tropical Pacific. Proc. of the ISOPE Ocean Mining Symposium. Tsukuba, Japan. pp. 167-174 
  9. THETIS., 1992. The environmental impact of deep sea mining, section I. Nodule and environment. ed. by Amann, H. 238 pp 
  10. Valsangkar, A.B., 2001. Implications of post-disturbance studies on the grain size of sediments from Central Indian Basin. Current Science, 81(10): 1365-1373 
  11. von Stackelberg. U., 1979. Sedimentation, Hiatus, and Development of Manganese nodules: VALDIVIA Site VA-13/2. Northern Central Pacific. In: Marine geology and oceanography of the Pacific manganese nodule province. ed. by Bischoff, J.L and D.Z. Piper. Province, Plenum Press, New York. pp. 529-557 
  12. Trueblood, D.D., E. Ozturgut, M. Pilipchuk, and I.F. Gloumov, 1997. The ecological impacts of the joint U.S.-Russian benthic impact experiment. Proc. of Int. Symposium Environmental Studies for Deep-sea Mining, Metal Mining Mineral Agency of Japan, Tokyo, Japan, pp. 237-243 
  13. Zielke, W., J.A. Jankowski, J. Sndermann, and J. Segscheider., 1995. Numerical modelling of sediment transport caused by deep-sea mining. Proc. of the first ISOPE-Ocean Mining Symposium, Tsukuba, Japan, pp. 157-162 
  14. Sharma, R., B.N. Nath, G. Parthiban, and S.J. Sankar, 2001. Sediment redistribution during simulated benthic disturbance and its implications on deep seabed mining. Deep-Sea Research II 48: 3363-3380 
  15. Gloumov, I., E. Ozturgut, and M. Pilipchuk, 1997. BIE in the Pacific: concept, methodology and basic results. Proc. of Int. Symposium Environmental Studies for Deep-sea Mining, Metal Mining Mineral Agency of Japan, Tokyo, Japan, pp. 45-47 
  16. 이현복, 지상범, 형기성, 박정기, 김기현, 오재경, 2006. 북동태평양 대한민국 광구 KR5 지역 표층퇴적물의 물리적 특성. Ocean and Polar Res., 28(4): 475−484 
  17. Nakata, K., M. Kubota, S. Aoki, and K. Taguchi, 1997. Dispersion of resuspended sediments by ocean mining activity-modeling study. Proc. of Int. Symposium Environmental Studies for Deepsea Mining, Metal Mining Mineral Agency of Japan, Tokyo, Japan, pp. 169-186 
  18. Khadge, N.H., 1999. Effects of benthic disturbance on geotechnical characteristics of sediment from nodule mining area in the Central Indian Basin. Proc. of the third ISOPE Ocean Mining Symposium, Goa, India, pp. 138-144 
  19. Tkatchenko, G. G., T. Radziejewdka, V. Stoyanova, I. Modilitba, and Parizek. 1996. Benthic impact experiment in the IOM pioneer area: Testing for effects of deep seabed disturbance. Proc. Seminar on Deep Seabed Mining Technology. Beijing, China, pp. C55-C68 
  20. Ingole, B.S., Z.A. Ansari, S.G.P. Matondkar, and N. Rodrigues, 1999. Immediate response of meio and macrobenthos to distribution caused by benthic disturber. Proc. of the third ISOPE Ocean Mining Symposium, Goa, India, pp. 191-197 
  21. 지상범, 강정극, 김기현, 박정기, 손승규, 고영탁, 2004. 북동태평양 클라리온-클리퍼톤 균열대 심해저 퇴적물의 전단강도 특성. 자원환경지질, 37(2): 255-267 
  22. Feng, L., H.U. Oebius, B. Grupe, and H.J. Becker, 1997. Basic research on characteristics of Deep-sea sediment clouds produced by marine mining. Proc. of Int. Symposium Environmental Studies for Deep-sea Mining, Metal Mining Mineral Agency of Japan, Tokyo, Japan, pp. 109−126 
  23. Tsuji, M., B.G. Barnett, and K. Ogawa, 1997. Resedimetation of discharged sludge by advection and dispersal analysis. Proc. of Int. Symposium Environmental Studies for Deep-sea Mining, Metal Mining Mineral Agency of Japan, Tokyo, Japan, pp. 271−285 
  24. IFREMER, 1989. Evaluation et etude des moyens necessaires a l'exploitation des nodules polymetalliques, Rapport final, TOME I, 1/1-5/10 unpublished 
  25. Sharma, R., G. Parthiban, K.M. Sivakholundu, A.B. Valsangkar, and A. Sardar, 1997. Performance of benthic disturber in Central Indian Ocean. National Institute of Oceanography, Goa, India, Tech. Report NIO/TR-4/97, 22 pp 
  26. Shirayama, Y., 1999. Biological results of JET project: an overview. Proc. of the third ISOPE Ocean Mining Symposium, Goa, India, pp. 185-190 
  27. Yamazaki, T. and R. Sharma., 2001. Estimation of sediment properties during benthic impact experiments. Marine Georesources and Geotechnology, 19: 269-289 
  28. 지상범, 이현복, 김종욱, 형기성, 고영탁, 이경용, 2006. 북동태평양 클라리온-클리퍼톤 균열대 심해저 퇴적물의 물리적 특성에 관한 연구. 자원환경지질, 39(6): 739-752 
  29. Rawson, M.D. and W.B.F. Ryan, 1978. Oceanic floor sediment and polymetallic nodules. World oceanic floor panorama, Lamont-Doherty Geol. Obs., Palisades (Map) 
  30. Berner, R.A., 1980. Early diagenesis-A theoretical approach. Princeton University Press. 241 pp 
  31. Fukushima, T, 1995. Overview "Japan Deep-Sea Impact Experiment = JET." Proc. of the ISOPE Ocean Mining Symposium. Tsukuba, Japan. pp. 47-53 
  32. Trueblood, D.D., 1993. US cruise report for BIE II cruise. NOAA Technical Memorandum no. OCRS 4, National Oceanic and Atmospheric Administration, USA 
  33. Ozturgut, E., J.W. Lavelle, O. Steffin, and S.A. Swift, 1980. Environmental investigation during manganese nodule mining tests in the North Equatorial Pacific in November 1978. NOAA Technical Memorandum ERL MESA-48, National Oceanic and Atmo-spheric Administration, Colorado (USA), 50 pp 
  34. Burns, R.E., B.H. Erickson, J.W. Lavelle. and E. Ozturgut, 1980. Observation and measurements during the monitoring of deep ocean manganese nodule mining tests in the North Pacific, Match-May 1978, NOAA Technical Memorandum ERL MESA-47, National Oceanic and Atmospheric Administration, Colorado (USA), 63 pp 
  35. 최종수, 홍섭, 김형우, 이태희, 2003. 해저연약지반 주행성능 실험 기법연구(II): 직진주행성능시험. 한국해양공학회 춘계학술대회논문집. pp. 116-120 
  36. Hein, J.R., H. Yen, and E. Alexander, 1979. Origin of iron-rich montmorillonite from the manganese nodule belt of the north equatorial Pacific. Clays and Clay Minerals, 27(3): 185-194 
  37. Sharma, R. and B.N. Nath, 1997. Benthic disturbance and monitoring experiment in Central Indian Ocean Basin. Proc. of the second ISOPE Ocean Mining Symposium, Seoul, Korea, pp. 146-153 

이 논문을 인용한 문헌 (3)

  1. Um, In-Kwon ; Kim, Ji-Hoon ; Nam, Seung-Il ; Choi, Hun-Soo ; Park, Ok-Boon 2009. "High Resolution Elements Analysis in N-E Pacific Sediments using XRF Core Scanner" 韓國鑛物學會誌 = Journal of the Mineralogical Society of Korea, 22(2): 129~138 
  2. Lee, Hyun-Bok ; Ko, Young-Tak ; Kim, Jong-Uk ; Chi, Sang-Bum ; Kim, Won-Nyon 2011. "Evaluation of Correction Parameter for the Free-fall Grab Based Mn Nodule Abundance in the Southern Sector of the KODOS" 자원환경지질 = Economic and environmental geology, 44(6): 475~483 
  3. Lee, Hyun-Bok ; Kim, Wonnyon ; Ko, Young-Tak ; Kim, Jonguk ; Chi, Sang-Bum ; Park, Cheong-Kee 2012. "Regional Variability of Manganese Nodule Facies in the KR1 Area in KODOS Area, Northeastern Equatorial Pacific" 자원환경지질 = Economic and environmental geology, 45(5): 477~486 

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일