• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

클릭스트림 데이터를 활용한 전자상거래에서 상품추천이 고객 행동에 미치는 영향 분석

Effects of Product Recommendations on Customer Behavior in e-Commerce : An Empirical Analysis of Online Bookstore Clickstream Data


Studies of recommender systems have focused on improving their performance in terms of error rates between the actual and predicted preference values. Also, many studies have been conducted to investigate the relationships between customer information processing and the characteristics of recommender systems via surveys and web-based experiments. However, the actual impact of recommendation on product pages for customer browsing behavior and decision-making in the commercial environment has not, to the best of our knowledge, been investigated with actual clickstream data. The principal objective of this research is to assess the effects of product recommendation on customer behavior in e-Commerce, using actual clickstream data. For this purpose, we utilized an online bookstore's clickstream data prior to and after the web site renovation of the store. We compared the recommendation effects on customer behavior with the data. From these comparisons, we determined that the relevant recommendations in product pages have positive relationships with the acquisition of customer attention and elaboration. Additionally, the placing of recommended items in shopping cart is positively related to suggesting the relevant recommendations. However, the frequencies at which the recommended items were purchased did not differ prior to and after the renovation of the site.

저자의 다른 논문

참고문헌 (41)

  1. Awad, N.F. and M.S. Krishan, "The Personalization Privacy Paradox:An Empirical Evaluation of Information Transparancy and The Willingness to be Profiled Online for Personalization," MIS Quarterly, Vol. 30, No.1(2006), pp.13-28. 
  2. Balabanovic, M. and Y. Shoham, "Fab: Content-based, Collaborative recommendation," Communication of the ACM, Vol. 40, No.3(1997), pp.66-72. 
  3. Bucklin, R.E., J.M. Lattin, A. Ansari, S. Gupta, D. Bell, E. Coupley, J.D.C. Little, C. Mela, A. Montgomery, and J. Steckel, "Choice and the Internet:From Clickstream to Research Stream," Marketing Letters, Vol.13, No.3(2002), pp.245-258. 
  4. Lee, J., M. Podlaseck, E. Schonberg, and R. Hoch, "Visualization and Analysis of Clickstream Data of Online Stores for Understanding Web Merchandising," Data Mining and Knowledge Discovery, Vol.5 (2001), pp.59-84. 
  5. Liang, T.-P., H.-J. Lai, and Y.-C. Ku, "Personalized Content Recommendation and User Satisfaction:Theoretical Synthesis and Empirical Findings," Journal of Management Information Systems, Vol.23, No. 3(2007), pp.45-70. 
  6. Linden, G., B. Smith, and J. York, "Amazon. com Recommendations:Item-to-item Collaborative Filtering," IEEE Internet Computing, Vol.7, No.3(2003), pp.76-80. 
  7. Moe, W.W., "Buying, Searching, or Browsing: Differentiating Between Online Shoppers Using In-Store Navigational Clickstream," Journal of Consumer Psychology, Vol.13, No.1-2(2003), pp.29-39. 
  8. Montgomery, A.L., S. Li, K. Srinivasan, and J.C. Liechty, "Modeling Online Browsing and Path Analysis Using Clickstream Data," Marketing Science, Vol.23, No.4(2004), pp.579-595. 
  9. Nakamoto, R., S. Nakajima, J. Miyazaki, and S. Uemura, "Tag-Based Contextual Collaborative Filtering," Proceedings of DEWS2007, Hiroshima, Japan, 2007, pp.25 -30. 
  10. Resnick, P. and H.R. Varian, "Recommender systems," Communications of the ACM, Vol.40, No.3(1997), pp.56-58 
  11. Adomavicius, G. and A. Tuzhilin, "Personalization technologies:a process-oriented perspective," Communication of the ACM, Vol.48, No.10(2005), pp.83-90. 
  12. Breese, J.S., D. Heckerman, and C. Kadie, "Empirical Analysis of Predictive Algorithms for Collaborative Filtering," Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, Madison, WI, USA, 1998. 
  13. Kim, B.M., Q. Li, C.S. Park, S.G. Kim, and J.Y. Kim, "A new approach for combining content-based and collaborative filters," Journal of Intelligent Information Systems, Vol.27, No.1(2006), pp.79-91. 
  14. Resnick, P., N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, "GroupLens:an open architecture for collaborative filtering of netnews," Proceedings of Proceedings of the 1994 ACM conference on Computer supported cooperative work Chapel Hill, North Carolina, United States 1994, pp.175 -186. 
  15. Kim, C.Y., J.K. Lee, Y.H. Cho, and D.H. Kim, "Viscors:A Visual-Content Recommender for the Mobile Web," IEEE Intelligent Systems, Vol.19, No.6(2004), pp.32 -39. 
  16. Rojsattarat, E. and N. Soonthornphisaj, "Hybrid Recommendation:Combining Content- Based Prediction and Collaborative Filtering," Proceedings of IDEAL 2003, LNCS 2690, 2003, pp.337-344. 
  17. Ho, S.Y. and S.H. Kwok, "The Attraction of Personalized Service for Users in Mobile Commerce:An Empirical Study," ACM SIGecom Exchanges, Vol.3, No.4(2003), pp. 10-18. 
  18. Ansari, A., S. Essegaier, and R. Kohli, "Internet Recommendation Systems," Journal of Marketing Research, Vol.37, No.3 (2000), pp.363-375. 
  19. Herlocker, J.L., J.A. Konstan, L.G. Terveen, and J.T. Riedl, "Evaluating collaborative filtering recommender systems," ACM Transactions on Information Systems, Vol.22, No.1(2004), pp.5-53. 
  20. Schafer, J.B., J. Konstan, and J. Riedl, "Recommender Systems in E-Commerce," Proceedings of E-Commerce, Denver, Colorado, 1999, ACM, pp.158-166. 
  21. Cho, Y.B., Y.H. Cho, and S.H. Kim, "Mining changes in customer buying behavior for collaborative recommendations," Expert Systems with Applications, Vol.28, No.2(2005), pp.359-369. 
  22. Bodapati, A.V., "Recommendation Systems with Purchase Data," Journal of Marketing Research, Vol.14(2008), pp.77-93. 
  23. Kumar, N. and I. Benbasat, "The Influence of Recommendations and Consumer Reviews on Evaluations of Websites," Information Systems Research, Vol.17, No.4 (2006), pp.425-439. 
  24. Sarwar, B., G. Karypis, J. Konstan, and J. Riedl, "Item-based collaborative filtering recommendation algorithms," Proceedings of Proceedings of the 10th international conference on World Wide Web, Hong Kong, 2001, pp.285-295. 
  25. Awad, N.F., J.L. Jones, and J. Zhang, "Does Search Matter? Using Online Clickstream Data to Examine the Relationship Between Online Search and Purchase Behavior," Proceedings of Twenty-Seventh International Conference on Information Systems, Milwaukee, 2006, pp.915-926. 
  26. Kim, J.W., B.H. Lee, M.J. Shaw, H.L. Chang, and M. Nelson, "Application of decision- tree induction techniques to personalized advertisements on Internet storefronts," International Journal of Electronic Commerce, Vol.5, No.3(2001), pp.45-62. 
  27. Claypool, M., A. Gokhale, T. Miranda, P. Murnikov, D. Netes, and M. Sartin, Combining Content-Based and Collaborative Filters in an Online Newspaper, Worcester Polytechnic Institute, 1999. 
  28. Konstan, J.A., B.N. Miller, D. Maltz, J. L. Herlocker, L.R. Gordon, and J. Riedl, "GroupLens:Applying collaborative filtering to USENET news," Communication of the ACM, Vol.40, No.3(1997), pp.77-87. 
  29. Moe, W.W. and P.S. Fader, "Dynamic Conversion Behavior at E-Commerce Sites," Management Science, Vol.50, No.3(2004), pp.326-335. 
  30. Montgomery, A.L., "Applying Quantitative Marketing Techniques to the Internet," Interfaces, Vol.31, No.2(2001), pp.90-108. 
  31. Tam, K.Y. and S.Y. Ho, "Web Personalization as a Persuasion Strategy:An Elaboration Likelihood Model Perspective," Information Systems Research, Vol.16, No. 3(2005), pp.271-291. 
  32. Tam, K.Y. and S.Y. Ho, "Understanding The Impact of Web Personalization on User Information Processing and Decision Outcomes," MIS Quarterly, Vol.30, No.4 (2006), pp.865-890. 
  33. Kim, J.K., Y.H. Cho, W.J. Kim, J.R. Kim, and J.H. Suh, "A personalized recommendation procedure for Internet shopping support," Electronic Commerce Research and Applications, Vol.1, No.3-4(2002), pp. 301-313. 
  34. Moe, W.W. and P.S. Fader, "Capturing Evolving Visit Behavior in Clickstream Data," Journal of Interactive Marketing, Vol.18, No.1(2004), pp.5-19. 
  35. Schafer, J.B., J.A. Konstan, and J. Riedl, "E-Commerce Recommendation Applications," Data Mining and Knowledge Discovery, Vol.5, No.1-2(2001), pp.115-153. 
  36. Mobasher, B., H. Dai, T. Luo, and M. Nakagawa, "Improving the Effectiveness of Collaborative Filtering on Anonymous Web Usage Data," Proceedings of Workshop Intelligent Techniques for Web Personalization, IJCAI-2001, Seattle Washington, 2001, pp.53-60. 
  37. Swaminathan, V., "The Impact of Recommendation Agents on Consumer Evaluation and Choice:The Moderating Role of Category Risk, Product Complexity, and Consumer Knowledge," Journal of Consumer Psychology, Vol.13, No.1-2(2003), pp.93-101. 
  38. Danaher, P.J., G.W. Mullarkey, and S. Essegaier, "Factors affecting Web site visit duration:A cross-domain analysis," Journal Of Marketing Research, Vol.43, No. 2(2006), pp.182-194. 
  39. Park, Y.-H. and P.S. Fader, "Modeling Browsing Behavior at Multiple Websites," Marketing Science, Vol.23, No.3(2004), pp.280-303. 
  40. Mobasher, B., H. Dai, T. Luo, and M. Nakagawa, "Effective Personalization Based on Association Rule Discovery from Web Usage Data," Proceedings of WIDM 2001, Atlanta, GA, USA, 2001, pp.9-15. 
  41. Xiao, B. and I. Benbasat, "E-Commerce Product Recommendation Agents:Use, Characteristics, and Impact," MIS Quarterly, Vol.31, No.1(2007), pp.137-209. 

이 논문을 인용한 문헌 (2)

  1. Lee, Dong Il ; Kim, Hyun Gyo 2014. "The Dynamic Research of Mobile and PC Online Media Visit Activities Effects on The E-Commerce Site Visit" 한국경영과학회지 = Journal of the Korean Operations Research and Management Science Society, 39(4): 85~95 
  2. Kim, Hyun Gyo ; Lee, Dong Il 2014. "The Effect of Deal-Proneness in the Searching Pattern on the Purchase Probability of Customer in Online Travel Services" 한국경영과학회지 = Journal of the Korean Operations Research and Management Science Society, 39(1): 29~48 


원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일