$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

소아청소년기 당뇨병성 신병증 (II) ; 병리 소견 및 병태생리를 중심으로
Diabetic Nephropathy in Childhood and Adolescence (II) ; Pathology and Pathophysiology 원문보기

대한소아신장학회지 = Journal of the Korean society of pediatric nephrology, v.13 no.2, 2009년, pp.99 - 117  

하태선 (충북대학교 의과대학 소아과학교실)

초록
AI-Helper 아이콘AI-Helper

당뇨병성 신병증은 최근 우리나라를 포함한 서구 사회에서는 만성 신부전의 가장 많은 원인 중 하나이며, 꾸준히 증가추세이다. 조직학적으로는, 사구체, 세뇨간질, 소동맥 등 신장의 주요 부위에 병변이 나타나는데, 특징적으로 사구체 기저막의 비후와 족세포의 변화와 함께 사구체 경화, 소동맥의 유리질 경화와 세뇨간질 부위에 섬유화 등이 나타난다. 당뇨병성 신병증은 혈역학적 인자들과 대사성 인자들 간의 복잡한 상호작용의 결과로 일어난다. 고혈당은 혈류역학적 요소로 고혈압과 함께 사구체내압의 증가와 혈관활성물질의 활성화에 함께, 비혈역학적 경로들, 예를 들면, 후기 당화합 최종생성물 생성, 세포 내 신호전달체계와 물질, 시토카인, 산화 스트레스 등 다양한 원인들을 활성화시킨다. 이러한 대사적, 혈류역학적인 인자들은 신장의 알부민 투과성을 증가시키고 세포 외 기질의 축적을 일으키며 결과적으로 증가된 단백뇨, 사구체경화와 세뇨관간질의 섬유화를 일으키게 된다.

Abstract AI-Helper 아이콘AI-Helper

Diabetic nephropathy is a major cause of chronic renal failure in developing countries, and the prevalence rate has markedly increased during the past decade. Diabetic nephropathy shows various specific histological changes not only in the glomeruli but also in the tubulointerstitial region. In the ...

주제어

참고문헌 (148)

  1. US Renal Data System: USRDS 2008 Annual Data Report. Bethesda MD, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases 2007. 

  2. Stengel B, Billon S, Van Dijk PC, Jager KJ, Dekker FW, Simpson K, et al. Trends in the incidence of renal replacement therapy for end-stage renal disease in Europe. Nephrol Dial Transplant 2003;18:1824-33. 

  3. ESRD Registry Committee, Korean Society of Nephrology. Current renal replacement therapy in Korea. Korean J Nephrol (Abstract) 2007;26:459-81. 

  4. Ha T-S. Diabetic nephropathy in childhood and adolescence (I); Clinical features. J Korean Soc Pediatr Nephrol 2009;13:1-13. 

  5. Taft JL, Billson VR, Nankervis A, Kincaid-Smith P, Martin FIR. A clinical-histological study of individuals with diabetes mellitus and proteinuria. Diabet Med 1990;7:215-21. 

  6. Parving H-H, Mauer M, Ritz E. Diabetic nephropathy. In: Brenner BM ed. The Kidney. WE Saunders, Philadelphia, PA: 2008; 1265-98. 

  7. Mauer SM, Steffes MW, Connett J, Najarian JS, Sutherland DE, Barbosa J. The development of lesions in the glomerular basement membrane and mesangium after transplantation of normal kidneys to diabetic patients. Diabetes 1983;32:948-52. 

  8. Mauer SM, Steffes MW, Ellis EN, Sutherland DE, Brown DM, Goetz FC. Structural-functional relationships in diabetic nephropathy. J Clin Invest 1984;74:1143-55. 

  9. Hayashi H, Karasawa R, Inn H, Saitou T, Ueno M, Nishi S, et al. An electron microscopic study of glomeruli in Japanese patients with non-insulin dependent diabetes mellitus. Kidney Int 1992;41:749-57. 

  10. Osterby R. Morphometric studies of the peripheral glomerular basement membrane in early juvenile diabetes. I. Development of initial basement membrane thickening. Diabetologia 1972;8:84-92. 

  11. Osterby R. Early phases in the development of diabetic glomerulopathy. Acta Med Scand Suppl 1974;574:3-82. 

  12. O'Connor AS, Schelling JR. Diabetes and the kidney. Am J Kidney Dis 2005;46:766-73. 

  13. Fioretto P, Steffes MW, Mauer M. Glomerular structure in nonproteinuric IDDM patients with various levels of albuminuria. Diabetes 1994;43:1358-64. 

  14. Fioretto P, Mauer M. Histopathology of diabetic nephropathy. Semin Nephrol 2007;27:195-207. 

  15. Nishi S, Ueno M, Hisaki S, Iino N, Iguchi S, Oyama Y, et al. Ultrastructural characteristics of diabetic nephropathy. Med Electron Microsc 2000;33:65-73. 

  16. Kimmelstiel P, Wilson C. Intercapillary lesions in glomeruli of kidney. Am J Pathol 1936;12:83-97. 

  17. Glick AD, Jacobson HR, Haralson MA. Mesangial deposition of type I collagen in human glomerulosclerosis. Hum Pathol 1992;23:1373-9. 

  18. Makino H, Shikata K, Wieslander J, Wada J, Kashihara N, Yoshioka K, et al. Localization of fibril/microfibril and basement membrane collagens in diabetic glomerulosclerosis in type 2 diabetes. Diabet Med 1994;11:304-11. 

  19. Imai N, Nishi S, Suzuki Y, Karasawa R, Ueno M, Shimada H, et al. Histological localization of advanced glycosylation end products in the progression of diabetic nephropathy. Nephron 1997;76:153-60. 

  20. Shioi A, Fujimoto T. Disorganization process in the development of diabetic nodular glomerulosclerosis. Tohoku J Exp Med 1989;159:257-75. 

  21. Murussi M, Baglio P, Gross JL, Silveiro SP. Risk factors for microalbuminuria and macroalbuminuria in type 2 diabetic patients: a 9-year follow-up study. Diabetes Care 2002;25:1101-3. 

  22. Mazzucco G, Bertani T, Fortunato M, Bernardi M, Leutner M, Boldorini R, et al. Different patterns of renal damage in type 2 diabetes mellitus: a multicentric study on 393 biopsies. Am J Kidney Dis 2002;39:713-20. 

  23. Hong D, Zheng T, Jia-qing S, Jian W, Zhi-hong L, Lei-shi L. Nodular glomerular lesion: a later stage of diabetic nephropathy- Diabetes Res Clin Pract 2007;78:189-95. 

  24. Ueno M, Imai N, Nishi S, Arakawa M. Diabetic capsular drop, fibrin cap, and the other exudative lesions (in Japanese). Nippon Rinsho Suppl 1997;17:213-6. 

  25. Farquhar MG, Hopper J, Moon HD. Diabetic glomerulosclerosis: electron and light microscopic studies. Am J Pathol 1959;35:721-35. 

  26. Bader R, Bader H, Grund KE, Mackensen-Haen S, Christ H, Bohle A. Structure and function of the kidney in diabetic glomerulosclerosis. Correlations between morphological and functional parameters. Pathol Res Pract 1980;167:204-16. 

  27. Giordano C, De Santo NG, Lamendola MG, Capodicasa G. The genesis of the Armanni-Ebstein lesion in diabetic nephropathy. J Diabet Complications 1987;1:2-3. 

  28. Kaneda K, Sakata N, Takebayashi S. Mitochondrial enlargement and basement membrane thickening of renal proximal tubules, possible initiators of micro albuminuria in non-insulindependent diabetics (NIDDM). Acta Pathol Jpn 1992;42:793-9. 

  29. Ditscherlein G. Renal histopathology in hypertensive diabetic patients. Hypertension 1985;7:1129-32. 

  30. Boeri D, Derchi LE, Martinoli C, Simoni G, Sampietro L, Storace D, et al. Intrarenal arteriosclerosis and impairment of kidney function in NIDDM subjects. Diabetologia 1998;41:121-4. 

  31. Cooper ME. Interaction of metabolic and haemodynamic factors in mediating experimental diabetic nephropathy. Diabetologia 2001;44:1957-72. 

  32. Zatz R, Dunn BR, Meyer TW, Anderson S, Rennke HG, Brenner BM. Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J Clin Invest 1986;77:1925-30. 

  33. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001;414:813-20. 

  34. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes 2005;54:1615-25. 

  35. Higgins PJ, Bunn HF. Kinetic analysis of nonenyzmatic glycosylation of hemoglobin. J Biol Chem 1981;256:5204-8. 

  36. Vlassara H, Bucala R, Striker L. Pathogenic effects of advanced glycosylation: Biochemical, biologic, and clinical implications for diabetes and aging. Lab Invest 1994;70:138-51. 

  37. Makino H, Shikata K, Kushiro M, Hironaka K, Yamasaki Y, Sugimoto H, et al. Roles of advanced glycation end-products in the progression of diabetic nephropathy. Nephrol Dial Transplant 1996;11 (5 Suppl):76-80. 

  38. Greene DA, Lattimer SA, Sima AA. Sorbitol, phosphoinositides, and sodium-potassium-ATPase in the pathogenesis of diabetic complications. N Engl J Med 1987;316:599-606. 

  39. Dunlop M. Aldose reductase and the role of the polyol pathway in diabetic nephropathy. Kidney Int 2000;Suppl.77:S3-S12. 

  40. Passariello N, Sepe J, Marrazzo G, De Cicco A, Peluso A, Pisano MC, et al. Effect of aldose reductase inhibitor (tolrestat) on urinary albumin excretion rate and glomerular fitration rate in IDDM subjects with nephropathy. Diabetes Care 1993;16:789-95. 

  41. Srivastava SK, Ramana KV, Bhatnagar A. Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options. Endocr Rev 2005;26:380-92. 

  42. Srinivasan V, Sandhya N, Sampathkumar R, Farooq S, Mohan V, Balasubramanyam M. Glutamine fructose-6-phosphate amidotransferase(GFAT) gene expression and activity in patients with type 2 diabetes: inter-relationships with hyperglycaemia and oxidative stress. Clin Biochem 2007;40:952-7. 

  43. Cooksey RC, Hebert Jr LF, Zhu JH, Wofford P, Garvey WT, McClain DA. Mechanism of hexosamine-induced insulin resistance in transgenic mice overexpressing glutamine:fructose-6-phosphate amidotransferase: decreased glucose transporter GLUT4 translocation and reversal by treatment with thiazolidinedione. Endocrinology 1999;140:1151-7. 

  44. Bohlender JM, Franke S, Stein G, Wolf G. Advanced glycation end products and the kidney. Am J Physiol Renal Physiol 2005;289:F645-F59. 

  45. McRobert EA, Gallicchio M, Jerums G, Cooper ME, Bach LA. The amino-terminal domains of the ezrin, radixin, and moesin (ERM) proteins bind advanced glycation end products, an interaction that may play a role in the development of diabetic complications. J Biol Chem 2003;278:25783-9. 

  46. Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 2006;114:597-605. 

  47. Schiekofer S, Andrassy M, Chen J, Rudofsky G, Schneider J, Wendt T, et al. Acute hyperglycemia causes intracellular formation of CML and activation of ras, p42/44MAPK, and nuclear factor ${\kappa}$ B in PBMCs. Diabetes 2003;52:621-33. 

  48. Yan SD, Schmidt AM, Anderson GM, Zhang J, Brett J, Zou YS, et al. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J Biol Chem 1994;269:9889-97. 

  49. Silbiger S, Crowley S, Shan Z, Brownlee M, Satriano J, Schlondorff D. Nonenzymatic glycation of mesangial matrix and prolonged exposure of mesangial matrix to elevated glucose reduces collagen synthesis and proteoglycan charge. Kidney Int 1993;43:853-64. 

  50. Mott JD, Khalifah RG, Nagase H, Shield CF 3rd, Hudson JK, Hudson BG. Nonenzymatic glycation of type IV collagen and matrix metalloproteinase susceptibility. Kidney Int 1997;52:1302-12. 

  51. Throckmorton DC, Brogden AP, Min B, Rasmussen H, Kashgarian M. PDGF and TGF- ${\beta}$ mediate collagen production by mesangial cells exposed to advanced glycosylation end products. Kidney Int 1995;48:111-7. 

  52. Forbes JM, Cooper ME, Oldfield MD, Thomas MC. Role of advanced glycation end products in diabetic nephropathy. J Am Soc Nephrol 2003;14(Suppl 3):S254-S8. 

  53. Makita Z, Radoff S, Rayfield EJ, Yang Z, Skolnik E, Delaney V, et al. Advanced glycosylation end products in patients with diabetic nephropathy. N Engl J Med 1991;325:836-42. 

  54. Soulis-Liparota T, Cooper M, Papazoglou D, Clarke B, Jerums G. Retardation by aminoguanidine of development of albuminuria, mesangial expansion, and tissue fluorescence in streptozocin-induced diabetic rat. Diabetes 1991;40:1328-34. 

  55. Vlassara H, Striker LJ, Teichberg S, Fuh H, Li YM, Steffes M. Advanced glycosylation endproducts induce glomerular sclerosis and albuminuria in normal rats. Proc Natl Acad Sci USA 1994;91:11704-18. 

  56. Yang CW, Vlassara H, Striker GE, Striker Lj. Administration of AGEs in vivo induces genes implicated in diabetic glomerulosclerosis. Kidney Int 1995;47(49 Suppl):S55-8. 

  57. Striker LJ, Striker GE. Administration of AGEs in vivo induces extracellular matrix gene expression. Nephrol Dial Transplant 1996;11(5 Suppl):62-5. 

  58. Ha T-S. Researches on the pathophysiology of proteinuria in diabetic nephropathy. Korean J Pediatr 1998;41(Suppl 1):S69-S74. 

  59. Hovind P, Tarnow L, Rossing P, Jensen BR, Graae M, Torp I, et al. Predictors for the development of micro albuminuria and macroalbuminuria in patients with type 1 diabetes: inception cohort study. BMJ 2004;328:1105-9. 

  60. Parving H-H, Anderson AR, Smidt UM, Svendsen PA. Early aggressive antihypertensive treatment reduces rate of decline in kidney function in diabetic nephropathy. Lancet 1983;1:1175-79. 

  61. Mogensen CE. Microalbuminuria and hypertension with focus on type 1 and type 2 diabetes. J Intern Med 2003;254:45-66. 

  62. Wolf G. New insights into the pathophysiology of diabetic nephropathy: from haemodynamics to molecular pathology. Eur J Clin Invest 2004;34:785-96. 

  63. Giunti S, Barit D, Cooper ME. Mechanisms of diabetic nephropathy: role of hypertension. Hypertension 2006;48:519-26. 

  64. Hostetter TH. Hyperfiltration and glomerulosclerosis. Semin Nephrol 2003;23:194-9. 

  65. Harris RC, Haralson MA, Badr KF. Continuous stretch-relaxation in culture alters rat mesangial cell morphology, growth characteristics, and metabolic activity. Lab Invest 1992;66:548-54. 

  66. Cortes P, Zhao X, Riser BL, Narins RG. Role of glomerular mechanical strain in the pathogenesis of diabetic nephropathy. Kidney Int 1997;51:57-68. 

  67. Gruden G, Thomas S, Burt D, Lane S, Chusney G, Sacks S, et al. Mechanical stretch induces vascular permeability factor in human mesangial cells: Mechanisms of signal transduction. Proc Natl Acad Sci USA 1997;94:12112-6. 

  68. Sugimoto H, Shikata K, Hirata K, Akiyama K, Matsuda M, Kushiro M, et al. Increased expression of intercellular adhesion molecule-1 (ICAM-1) in diabetic rat glomeruli: glomerular hyperfiltration is a potential mechanism of ICAM-1 upregulation. Diabetes 1997;46:2075-81. 

  69. Petermann AT, Hiromura K, Blonski M, Pippin J, Monkawa T, Durvasula R, et al. Mechanical stress reduces podocyte proliferation in vitro. Kidney Int 2002;61:40-50. 

  70. Kriz W, Hackenthal E, Nobiling R, Sakai T, Elger M, Hahnel B. A role for podocytes to counteract capillary wall distension. Kidney Int 1994;45:369-76. 

  71. Endlich N, Kress KR, Reiser J, Uttenweiler D, Kriz W, Mundel P, et al. Podocytes respond to mechanical stress in vitro. J Am Soc Nephrol 2001;12:413-22. 

  72. Dessapt C, Baradez MO, Hayward A, Dei Cas A, Thomas SM, Viberti G, et al. Mechanical forces and TGF ${\beta}$ 1 reduce podocyte adhesion through ${\alpha}3{\beta}1$ integrin downregulation. Nephrol Dial Transplant 2009;24:2645-55. 

  73. Johnson RJ, Alpers CE, Yoshimura A, Lombardi D, Pritzl P, Floege J, et al. Renal injury from angiotensin II mediated hypertension. Hypertension 1992;19:464-74. 

  74. Anderson S. Physiologic actions and molecular expression of the renin-angiotensin system in the diabetic rat. Miner Electrolyte Metab 1998;24:406-11. 

  75. Klahr S, Morrissey J. Angiotensin II and gene expression in the kidney. Am J Kidney Dis 1998;31:171-6. 

  76. Haugen EN, Croatt AJ, Nath CA. Angiotensin II induces renal oxidant stress in vivo and heme oxygenase-1 in vivo and in vitro. Kidney Int 2000;58:144-52. 

  77. Cooper ME, Jerums G, Gilbert RE. Diabetic vascular complications. Clin Exp Pharmacol Physiol 1997;24:770-5. 

  78. Cooper ME. Renal protection and ACE inhibition in microalbuminuric type I and type II diabetic patients. J Hypertens 1996;14:S11-4. 

  79. ACE Inhibitors in Diabetic Nephropathy Trialist Group. Should all patients with type 1 diabetes mellitus and micro albuminuria receive angiotensin-converting enzyme inhibitors- A meta-analysis of individual patient data. Ann Intern Med 2001;134:370-9. 

  80. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, et al. RENAAL Study Investigators. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001;345:861-9. 

  81. Sarafidis PA, Stafylas PC, Kanaki AI, Lasaridis AN. Effects of renin-angiotensin system blockers on renal outcomes and all-cause mortality in patients with diabetic nephropathy: an updated meta-analysis. Am J Hypertens 2008;21:922-9. 

  82. Zatz R, Dunn BR, Meyer TW, Brenner B. Prevention of diabetic glomerulapathy by pharmacological amelioration of glomerular capillary hypertension. J Clin Invest 1986;77:1925-30. 

  83. Gilbert RE, Cox A, Wu LL, Allen TJ, Hulthen UL, Jerums G, et al. Expression of transforming growth factor- ${\beta}$ 1 and type IV collagen in the renal tubulointerstitium in experimental diabetes: effects of angiotensin converting enzyme inhibition. Diabetes 1998;47:414-22. 

  84. Nguyen G, Danser AH. Prorenin and (pro)renin receptor: a review of available data from in vitro studies and experimental models in rodents. Exp Physiol 2008;93:557-63. 

  85. Danser AH. Novel drugs targeting hypertension: renin inhibitors. J Cardiovasc Pharmacol 2007;50:105-11. 

  86. Ichihara A, Hayashi M, Kaneshiro Y, Suzuki F, Nakagawa T, Tada Y, et al. Inhibition of diabetic nephropathy by a decoy peptide corresponding to the "handle" region for nonproteolytic activation of prorenin. J Clin Invest 2004;114:1128-35. 

  87. Luetscher JA, Kraemer FB, Wilson DM, Schwartz HC, Bryer-Ash M. Increased plasma inactive renin in diabetes mellitus. A marker of micro-vascular complications. N Engl J Med 1985;312:1412-7. 

  88. Deinum J, Ronn B, Mathiesen E, Derkx FH, Hop WC, Schalekamp MA. Increase in serum prorenin precedes onset of micro albuminuria in patients with insulin-dependent diabetes mellitus. Diabetologia 1999;42:1006-10. 

  89. Parving HR, Persson F, Lewis JB, Lewis EJ, Hollenberg NK. AVOID Study Investigators. Aliskiren combined with losartan in type 2 diabetes and nephropathy. N Engl J Med 2008;358:2433-46. 

  90. Persson F, Rossing P, Schjoedt KJ, Juhl T, Tarnow L, Stehouwer CD, et al. Time course of the antiproteinuric and antihypertensive effects of direct renin inhibition in type 2 diabetes. Kidney Int 2008;73:1419-25. 

  91. Sun Y, Zhang J, Lu L, Chen SS, Quinn MT, Weber KT. Aldosterone-induced inflammation in the rat heart : role of oxidative stress. Am J Pathol 2002;161:1773-81. 

  92. Greene EL, Kren S, Hostetter TH. Role of aldosterone in the remnant kidney model in the rat. J Clin Invest 1996;98:1063-8. 

  93. Fujisawa G, Okada K, Muto S, Fujita N, Itabashi N, Kusano E, et al. Spironolactone prevents early renal injury in streptozotocin-induced diabetic rats. Kidney Int 2004;66:1493-1502. 

  94. Han SY, Kim CH, Kim HS, Jee YH, Song HK, Lee MH, et al. Spironolactone prevents diabetic nephropathy through an anti -inflammatory mechanism in type 2 diabetic rats. J Am Soc Nephrol 2006;17:1362-72. 

  95. Schjoedt KJ, Rossing K, Juhl TR, Boomsma F, Tarnow L, Rossing P, et al. Beneficial impact of spironolactone on nephrotic range albuminuria in diabetic nephropathy. Kidney Int 2006;70:536-42. 

  96. Sato A, Hayashi K, Naruse M, Saruta T. Effectiveness of aldosterone blockade in patients with diabetic nephropathy. Hypertension 2003;41:64-8. 

  97. Kang YS, Ko GJ, Lee MH, Song HK, Han SY, Han KH, et al. Effect of eplerenone, enalapril and their combination treatment on diabetic nephropathy in type II diabetic rats. Nephrol Dial Transplant 2009;24:73-84. 

  98. Joffe HV, Kwong RY, Gerhard-Herman MD, Rice C, Feldman K, Adler GK. Beneficial effects of eplerenone versus hydrochlorothiazide on coronary circulatory function in patients with diabetes mellitus. J Clin Endocrinol Metab 2007;92:2552-8. 

  99. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 1992;258:607-14. 

  100. Koya D, King GL. Protein kinase C activation and the development of diabetic complications. Diabetes 1998;47: 859-66. 

  101. Koya D, Jirousek MR, Lin Y-W, Ishii H, Kuboki K, King GL. Characterization of protein kinase C ${\beta}$ isoform activation on the gene expression of transforming growth factor- ${\beta}$ , extracellular matrix components, and prostanoids in the glomeruli of diabetic rats. J Clin Invest 1997;100:115-26. 

  102. Haneda M, Araki S, Togawa M, Sugimoto T, Isono M, Kikkawa R, et al. Mitogen-activated protein kinase cascade is activated in glomeruli of diabetic rats and glomerular mesangial cells cultured under high glucose conditions. Diabetes 1997;46:847-53. 

  103. Ruan X, Arendshort WJ. Role of protein kinase C in angiotensin II-induced renal vasoconstrictin in genetically hypertensive rats. Am J Physiol 1996;270:F945-F52. 

  104. Perico N, Benigni A, Gabanelli M, Piccinelli A, Rog M, De Riva C, et al. Atrial natriuretic peptide and prostacyclin synergistically mediate hyperfiltration and hyperperfusion of diabetic rats. Diabetes 1992;41:533-8. 

  105. Sharma K, Danoff TM, DePiero A, Ziyadeh FN. Enhanced expression of inducible nitric oxide synthase in murine macrophages and glomerular mesangial cells by elevated glucose levels: possible mediatio via protein kinase C. Biochem Biophys Res Commun 1995;207:80-8. 

  106. Ishii H, Jirousek MR, Koya D, Takagi C, Xia P, Clermont A, et al. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC ${\beta}$ inhibitor. Science 1996;272:728-31. 

  107. Babazono T, Kapor-Drezgic J, Dlugosz JA, Whiteside C. Altered expression and subcellular localization of diacylglycerol-sensitive protein kinase C isoforms in diabetic rat glomerular cells. Diabetes 1998;47:668-76. 

  108. Del Prete D, Anglani F, Ceol M, D'Angelo A, Forino M, Vianello D, et al. Molecular biology of diabetic gloomerulosclerosis. Nephrol Dial Transplant 1998;13[Suppl 8]:20-5. 

  109. White MF. The insulin signalling system and the IRS proteins. Diabetologia 1997;40:S2-S17. 

  110. Ueki K, Yamamoto-Honda R, Kaburagi Y, Yamauchi T, Tobe K, Burgering BM, et al. Potential role of protein kinase B in insulin-induced glucose transport, glycogen synthesis, and protein synthesis. J Biol Chem 1998;273:5315-22. 

  111. Vanhasebroeck B, Alessi DR. The PI3K-PDK1 connection: more than just a road to PKB. Biochem J 2000;346:561-76. 

  112. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997;91:231-41. 

  113. Konishi H, Matsuzaki H, Tanaka M, Ono Y, Tokunaga C, Kuroda S, et al. Activation of RAC-protein kinase by heat shock and hyperosmolarity stress through a pathway independent of phosphatidylinositol 3-kinase. Proc Natl Acad sci USA 1996;93:7639-43. 

  114. Kohn AD, Summers SA, Birnbaum MJ, Roth RA. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem 1996;271:31372-8. 

  115. Bhandari T, Feliers D, Senthil D, Stewart JL, Gingras AC, Abboud HE, et al. Insulin regulation of protein translation repressor 4E-BP1, an elF4E binding protein, in renal epithelial cells involves diverse signaling pathways. Kidney Int 2001;59:866-75. 

  116. Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 2001;81:807-69. 

  117. Hsieh TJ, Zhang SL, Filep JG, Tang SS, Ingelfinger JR, Chan JS. High glucose stimulates angiotensinogen gene expression via reactive oxygen species generation in rat kidney proximal tubular cells. Endocrinology 2002;143:2975-85. 

  118. Ishida T, Haneda M, Maeda S, Koya D, Kikkawa R. Stretch-induced overexpression of fibronectin in mesangial cells is mediated by the activation of mitogen-activated protein kinase. Diabetes 1999;48:595-602. 

  119. Nose A, Mori Y, Uchiyama-Tanaka Y, Kishimoto N, Maruyama K, Matsubara H, et al. Regulation of glucose transporter (GLUT1) gene expression by angiotensin II in mesangial cells: Involvement of HB-EGF and EGF receptor transactivation. Hypertens Res 2003;26:67-73. 

  120. Toyoda M, Suzuki D, Honma M, Uehara G, Sakai T, Umezono T, et al. High expression of PKC-MAPK pathway mRNAs correlates with glomerular lesions in human diabetic nephropathy. Kidney Int 2004;66:1107-14. 

  121. Sakai N, Wada T, Furuichi K, Iwata Y, Yoshimoto K, Kitagawa K, et al. Involvement of extracellular signal-regulated kinase and p38 in human diabetic nephropathy. Am J Kidney Dis 2005;45:54-65. 

  122. Sharma K, Ziyadeh FN. Biochemical events and cytokine interactions linking glucose metabolism to the development of diabetic nephropathy. Semin Nephrol 1997;17:80-92. 

  123. Peters H, Noble NA, Border WA. Transforming growth factor-beta in human glomerular injury. Curr Opin Nephrol Hypertens 1997;6:389-93. 

  124. Fumo P, Kuncio GS, Ziyadeh FN. PKC and high glucose stimulate collagen alpha 1 (IV) transcriptional activity in a reporter mesangial cell line. Am J Physiol 1994;267:632-8. 

  125. Nakamura T, Fukui M, Ebihara I, Osada S, Nagaoka I, Tomino Y, et al. mRNA expression of growth factors in glomeruli from diabetic rats. Diabetes 1993;42:450-6. 

  126. Sharma K, Jin Y, Guo J, Ziyadeh FN. Neutralization of TGF ${\beta}$ antibody attenuates kidney hypertrophy and the enhanced extracelluar matrix gene expression in STZ-induced diabetic mice. Diabetes 1996;45:522-30. 

  127. Ferrara N, Gerber, HP, LeCouter, J. The biology of VEGF and its receptors. Nat. Med 2003;9:669-76. 

  128. Schrijvers BF, Flyvbjerg A, De Vriese AS. The role of vascular endothelial growth factor (VEGF) in renal pathophysiology. Kidney Int 2004;65:2003-17. 

  129. Cooper ME, Vranes D, Youssef S, Stacker SA, Cox AJ, Rizkalla B, et al. Increased renal expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in experimental diabetes. Diabetes 1999;48:2229-39. 

  130. Lee EY, Chung CH, Kim JH, Joung HJ, Hong SY. Antioxidants ameliorate the expression of vascular endothelial growth factor mediated by protein kinase C in diabetic podocytes. Nephrol Dial Transplant 2006;21:1496-1503. 

  131. Shulman K, Rosen S, Tognazzi K, Manseau EJ, Brown LF. Expression of vascular permeability factor (VPF/VEGF) is altered in many glomerular diseases. J Am Soc Nephrol 1996;7:661-6. 

  132. de Vriese AS, Tilton RG, Elger M, Stephan CC, Kriz W, Lameire NH. Antibodies against vascular endothelial growth factor improve early renal dysfunction in experimental diabetes. J Am Soc Nephrol 2001;12:993-1000. 

  133. Flyvbjerg A, Dagnaes-Hansen F, De Vriese AS, Schrijvers BF, Tilton RG, Rasch R. Amelioration of long-term renal changes in obese type 2 diabetic mice by a neutralizing vascular endothelial growth factor antibody. Diabetes 2002;51:3090-4. 

  134. Schrijvers BF, Flyvbjerg A, Tilton RG, Lameire NH, De Vriese AS. A neutralizing VEGF antibody prevents glomerular hypertrophy in a model of obese type 2 diabetes, the Zucker diabetic fatty rat. Nephrol Dial Transplant 2006;21:324-9. 

  135. Lee EY, Shim MS, Kim MJ, Hong SY, Shin YG, Chung CH. Angiotensin II receptor blocker attenuates overexpression of vascular endothelial growth factor in diabetic podocytes. Exp Mol Med 2004;36:65-70. 

  136. Tsuchida K, Makita Z, Yamagishi S, Atsumi T, Miyoshi H, Obara S, et al. Suppression of transforming growth factor beta and vascular endothelial growth factor in diabetic nephropathy in rats by a novel advanced glycation end product inhibitor, OPB-9195. Diabetologia 1999;42:579-88. 

  137. Tesch GH. MCP-1/CCL2: a new diagnostic marker and therapeutic target for progressive renal injury in diabetic nephropathy. Am J Physiol Renal Physiol 2008;294:F697-701. 

  138. Fornoni A, Ijaz A, Tejada T, Lenz O. Role of inflammation in diabetic nephropathy. Curr Diabetes Rev 2008;4:10-7. 

  139. Navarro-Gonzalez JF, Mora-Fernandez C. The role of inflammatory cytokines in diabetic nephropathy. J Am Soc Nephrol 2008;19:433-42. 

  140. Chow FY, Nikolic-Paterson DJ, Ozols E, Atkins RC, Rollin BJ & Tesch GH. Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice. Kidney Int 2006;69:73-80. 

  141. Giunti S, Tesch GH, Pinach S, Burt DJ, Cooper ME, Cavallo-Perin P, et al. Monocyte chemoattractant protein-1 has prosclerotic effects both in a mouse model of experimental diabetes, and in vitro in human mesangial cells. Diabetologia 2008;51:198-207. 

  142. Gu L, Ni Z, Qian J, Tomino Y. Pravastatin inhibits carboxymethyllysine-induced monocyte chemoattractant protein 1 expression in podocytes via prevention of signaling events. Nephron Exp Nephrol 2007;106:e1-10. 

  143. Lee EY, Chung CH, Khoury CC, Yeo TK, Pyagay PE, Wang A, et al. The monocyte chemoattractant protein-1/CCR2 loop, inducible by TGF-beta, increases podocyte motility and albumin permeability. Am J Physiol Renal Physiol 2009;297:F85-94. 

  144. Tan AL, Forbes JM, Cooper ME. AGE, RAGE, and ROS in diabetic nephropathy. Semin Nephrol 2007;27:130-43. 

  145. Ha H, Lee HB. Reactive oxygen species amplify glucose signalling in renal cells cultured under high glucose and in diabetic kidney. Nephrology (Carlton) 2005;10 Suppl:S7-S10. 

  146. Susztak K, Raff AC, Schiffer M, Bottinger EP. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 2006;55:225-33. 

  147. Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 2008;57:1446-54. 

  148. Ha T-S, Kim H-S. Effects of advanced glycation endproducts on rat glomerular epithelial cells: Roles of reactive oxygen species. Korean J Nephrol 2003;22:285-93. 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로