$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

구조물의 진동 제어를 위한 압착식 MR 감쇠기의 동적 모델링

Dynamic Modeling of Semi-active Squeeze Mode MR Damper for Structural Vibration Control

초록

일반적으로 MR 감쇠기를 이용한 준능동 제어 시스템을 구축하기 위해서는 감쇠장치의 동적모델이 요구된다. 여기서, 동적모델링은 감쇠장치의 발생 감쇠력 및 거동 성향 등을 수치적으로 예측하는 것이다. 따라서 본 연구에서는 이러한 MR 감쇠기의 동적거동을 실무적인 관점에서 합리적으로 모델링하기 위하여 다양한 동적모델 중 Power 모델 및 Bingham 모델을 적용해 MR 감쇠기의 동적거동특성을 예측 평가하였다. 이때 활용한 MR 감쇠기의 실험결과는 압착식 형태로 개발된 MR 감쇠기를 대상으로 동하중 실험을 수행하여 획득하였으며, 힘-변위 이력곡선으로부터 준능동 제어장치로의 타당성을 확인하였다. 또한, 각 동적모델의 예측성능을 평가하기 위하여 우선 실험결과를 이용해 각 동적모델 별 모델변수를 규명하였고, 이를 바탕으로 힘-속도 관계곡선 및 예측된 발생 감쇠력의 오차율을 산출하여 개발된 압착식 MR 감쇠기의 실험결과와 상호 비교 평가하였다. 최종적으로 본 연구에서 개발한 압착식 MR 감쇠기는 준능동 제어장치로 활용 가능함을 확인하였고, 평가된 두 가지 동적모델은 모두 우수한 예측성능을 보임으로써 본 연구에서 개발한 압착식 MR 감쇠기는 물론 MR유체를 이용한 다양한 형태의 감쇠장치의 거동특성을 수치적으로 예측하기 위하여 간단히 활용될 수 있는 가능성을 제시하였다.

Abstract

Normally in order to build a semi-active control system equipped with MR damper, the dynamic modeling of the damper is required to numerically predict its dynamic damping force and also its behavioral characteristics. For the dynamic modeling of the MR damper, this paper attempts to predict and evaluate its dynamic behavior by applying specifically both a power model and a Bingham model. Dynamic loading tests were performed on the squeeze type of damper specially designed for this research, and force-displacement hysteresis loops confirmed the effectiveness of the damper as a semi-active control device. In the meantime, in order to evaluate the effectiveness of each model applied, the model parameter for each model was identified. On the basis of the parameter, we derived the error ratio of the force-velocity relationship curve and the dynamic damping force, which was contrasted and compared with the experimental results of the squeeze type of damper. Finally, the squeeze type of MR damper developed in this research was proved to be valid as a semi-active control device, and also the evaluation of the two dynamic models showed they were working fine so that they were likely to be easily utilized to numerically predict the dynamic characteristics of any dampers with MR fluid as well as the squeeze type of MR damper.

참고문헌 (15)

  1. Carlson J.D. and Spencer Jr. B.F., “Magneto-Rheological Fluid Dampers for Semi-Active Seismic Control,” Proceeding of the 3rd International Conference on Motion and Vibration Control, Chiba Japan, Vol. 3, 1996, pp. 35-40 
  2. Gavin H.P., Ortiz D.S. and Hanson R.D., "Testing and Modeling of a Prototype ER Damper for Seismic Structural Response Control," Proceedings of the International Workshop on Structural Control, USC Publication Number CE-9311, 1994, pp. 166-180 
  3. Heo G.H., Lee D.G., Lee G. and Lee W.S., “Smart Damping System for Structural Vibration Mitigation; Development of Unified Clipped Optimal Algorithm and Evaluation of Control Performance,” The 1th International Conference of Advanced Nondestructive Evaluation, 2005, pp. 30 
  4. Jansen L.M. and Dyke S.J., "Semiactive Control Strategies for MR Dampers: Comparative Study," Journal of Engineering Mechanics, 2000, pp.795-803 
  5. Sodeyama H., Sunakoda K., Fujitani H., Soda S., Iwata N. and Hata K., "Dynamic Tests and Simulation of Magneto-Rheological Dampers," Computer-Aided Civil and Intrastructure Engineering, Vol. 18, 2003, pp. 45-57 
  6. Yang G., "Large-Scale Magnetorheological Fluid Damper for Vibration Mitigation: Modeling," Testing and Control, Ph. D Dissertation, University of Notre Dame. 2001 
  7. Yang G., Spencer Jr. B.F., Carlson J.D. and M. K. Sain M.K., "Large-scale MR Fluid Dampers: Modeling and Dynamic Performance Considerations,"Engineering Structures, Vol. 24, Issue 3, 2002, pp. 309-323 
  8. Spencer, Jr. B.F., Dyke S.J. and Carlson J.D., “Phenomenologcal Model for Magnetorheological Dampers,” Journal of Engineering Mechanics, ASCE, Vol. 123, No. 3, 1997, pp. 230-238 
  9. 정형조, 이인원 “토목/건축 분야의 스마트제어 기술:MR 댐퍼-기반 스마트제어 기술을 중심으로” 전산구조공학회논문집 제 16권, 제3호, 2003, pp. 41-50 
  10. Datta T.K., “A State-of-Art Review on Active Control of Structures,” ISET Journal of Earthquake Technology, March, Paper No. 430, Vol. 40, No. 1, 2003, pp. 1-17 
  11. Heo G.H., Lee G., Lee W.S. and Lee D.G., “Designing a Smart Damping System to Mitigate Structure Vibration: Part 2. Experimental Approval of Unified Lyapunov Control Algorithm,” Smart Structures and Material 12th SPIE Annual International Symposium, March, Vol. 5757, 2005, pp. 587-593 
  12. Gavin H.P., Hose Y.D. and R. D. Hanson R.D., "Design and Control of Electrorheological Dampers," Proceeding of the First World Conference on Structural Control, Pasadena, CA, August 3-5, Vol. 1, 1994, pp. WP3-83~WP3-92 
  13. Dyke S J., Spencer Jr B F., Sain M.K. and Carlson J.D. "An Experimental Study of MR Dampers for Seismic Protection," Smart Materials and Structures: Special Issue on Large Civil Structures, 1998, pp. 693-703 
  14. Fujino Y., Soong T.T. and Spencer Jr. B.F.,"Structural Control: Basic Concepts and Applications," Proc. ASCE Structures Congress, 1996, pp. 1277-1287 
  15. Sodeyama H., Suzuki K. and Sunakoda K., “Development of Large Capacity Semi-Active Seismic Damper Using Magneto-Rheologocal Fluid,” Transactions of the ASME Journal of Pressure Vessel Technology Vol. 126 February, 2004, pp. 105-109 

이 논문을 인용한 문헌 (1)

  1. Heo, Gwang-Hee ; Jeon, Seung-Gon 2013. "Characteristics and Dynamic Modeling of MR Damper for Semi-active Vibration Control" 한국구조물진단유지관리공학회 논문집 = Journal of the Korea Institute for Structural Maintenance and Inspection, 17(6): 61~69 

DOI 인용 스타일