$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

카제인 유래 생리활성 Peptide의 체내 효과
Physiological Effects of Casein-derived Bioactive Peptides 원문보기

Korean journal for food science of animal resources = 한국축산식품학회지, v.29 no.6, 2009년, pp.659 - 667  

정호정 (세종대학교 식품공학과) ,  민복기 (세종대학교 식품공학과) ,  곽해수 (세종대학교 식품공학과)

초록
AI-Helper 아이콘AI-Helper

카제인은 우유에서 단백질의 주요 급원으로 알려져 있으며, 이에 따라 카제인 유래 생리활성 펩타이드와 체내 작용에 대한 연구들이 지속적으로 보고되어 왔다. 카제인은 모체단백질 내에서는 불활성을 띄지만 여러 종류의 protease의 작용, 미생물 발효 시 효소적인 가수분해 및 위장에서의 소화를 거치면서 모체단백질에서 방출되어 활성을 띄게 된다. 카제인은 체내에서 흡수된 후 여러 생리활성을 지니게 된다. 먼저 심장혈관계에서 카제인 유래 펩타이드는 ACE 저해활성을 가지므로 고혈압을 예방하는데 도움을 줄 것으로 기대된다. 신경계에서는 opioid 유사물질로서 모르핀과 같은 효과를 나타낸다. 면역계에서는 여러 측면에서 면역기능을 조절한다고 알려져 있으며, 마지막으로 영양계에서는 대표적으로 CPP(caseinophosphopeptide) 및 GMP(glycomacropeptide)가 칼슘, 철과 같은 무기질 흡수에 도움을 준다. 이와 같이 카제인 유래 펩타이드의 다양한 생리활성은 다양한 기능성 유제품에 적용되어왔다. 본고에서는 생리활성 펩타이드의 생성, 흡수 및 흡수기전과 이들의 대표적인 생리활성기능 중 심혈관, 신경, 면역 및 영양에 미치는 영향에 대해 논하였다.

Abstract AI-Helper 아이콘AI-Helper

Casein is considered to be the main source of protein in milk; therefore, many studies have been conducted to identify casein-derived bioactive peptides and their physiological effects. Casein is inactive within the parent protein but can be liberated by various proteases and enzymatic hydrolysis du...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서 본고에서는 우유나 유제품에 존재하는 카제인으로부터 유래한 생리활성 peptide가 어떠한 경로를 통해 생성되고, 섭취 및 흡수 기전과 이들의 대표적인 생리활성기능 중 심혈관, 신경, 면역 및 영양에 미치는 영향에 대해 논하고자 한다.
  • 이와 같이 카제인 유래 펩타이드의 다양한 생리활성은 다양한 기능성 유제품에 적용되어왔다. 본고에서는 생리활성 펩타이드의 생성, 흡수 및 흡수기전과 이들의 대표적인 생리활성기능 중 심혈관, 신경, 면역 및 영양에 미치는 영향에 대해 논하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
카제인은 무엇인가? 2%의 단백질을 포함하는데 그 중 80%는 카제인이며, 20%는 유청단백질이다. 카제인은 산 불용성의 인단백질이며(Fox and Brodkorb, 2008), α-, β-, κ-카제인으로 분류된다. 그리고 유청단백질은 구형을 띄며 카제인보다 물에서 잘 용해되는데(Haug et al.
카제인은 무엇으로 분류되는가? 2%의 단백질을 포함하는데 그 중 80%는 카제인이며, 20%는 유청단백질이다. 카제인은 산 불용성의 인단백질이며(Fox and Brodkorb, 2008), α-, β-, κ-카제인으로 분류된다. 그리고 유청단백질은 구형을 띄며 카제인보다 물에서 잘 용해되는데(Haug et al.
카제인은 우유에서 단백질의 주요 급원으로 알려져 있는데 이는 체내에서 흡수된 후 여러 생리활성을 지니게 되는데 무엇이 있는가? 카제인은 체내에서 흡수된 후 여러 생리활성을 지니게 된다. 먼저 심장혈관계에서 카제인 유래 펩타이드는 ACE 저해활성을 가지므로 고혈압을 예방하는데 도움을 줄 것으로 기대된다. 신경계에서는 opioid 유사물질로서모르핀과 같은 효과를 나타낸다. 면역계에서는 여러 측면에서 면역기능을 조절한다고 알려져 있으며, 마지막으로 영양계에서는 대표적으로 CPP(caseinophosphopeptide) 및 GMP(glycomacropeptide)가 칼슘, 철과 같은 무기질 흡수에 도움을 준다. 이와 같이 카제인 유래 펩타이드의 다양한 생리활성은 다양한 기능성 유제품에 적용되어왔다.
질의응답 정보가 도움이 되었나요?

참고문헌 (75)

  1. Aimutis, W. R. (2004) Bioactive properties of milk proteins with particular focus on anticariogenesis. J. Nutr. 134, 989S-995S 

  2. Ait-Oukhatar, N., Peres, J. M., Bouhallab, S., Neuville, D., Bureau, F., Bouvard, G., Arhan, P., and Bougle, D. (2002) Bioavailability of caseinophosphopeptide-bound iron. J. Lab. Clin. Med. 140, 290-294 

  3. Andrews, A. T., Williams, R. J. H., Brownsell, V. L., Isgrove, F. H., Jenkins, K., and Kanekanian, A. D. (2006) $\beta$ -CN-5P and $\beta$ -CN-4P components of bovine milk proteose?peptone: large scale preparation and influence on the growth of cariogenic microorganisms. Food Chem. 96, 234-241 

  4. Ardo, Y., Lilbæk, H., Kristiansen, K. R., Zakora, M., and Otte, J. (2007) Identification of large phosphopeptides from $\beta$ -casein that characteristically accumulate during ripening of the semi-hard cheese Herrg ${\aa}$ rd. Int. Dairy J. 17, 513-524 

  5. Ashar, M. N. and Chand, R. (2004) Fermented milk containing ACE-inhibitory peptides reduces blood pressure in middle aged hypertensive subjects. Milchwissenschaft 59, 363-366 

  6. Blondelle, S. E. and Lohner, K. (2000) Combinatorial libraries: a tool to design antimicrobial and antifungal peptide analogues having lytic specificities for structure-activity relationship studies. Biopolymers 55, 74-87 

  7. Bruck, W. M., Graverholt, G., and Gibson, G. R. (2003) A two-stage continuous culture system to study the effect of supplemental α-lactalbumin and glycomacropeptide on mixed cultures of human gut bacteria challenged with 

  8. Buikofer, U., Meyer, J., Sieber, R., and Wechsler, D. (2007) Quantification of the angiotensin-converting enzyme-inhibiting tripeptides Val-Pro-Pro and Ile-Pro-Pro in hard, semihard and soft cheeses. Int. Dairy J. 17, 968-975 

  9. Clare, D. A. and Swaisgood, H. E. (2000) Bioactive milk peptides: a prospectus. J. Dairy Sci. 83, 1187-1195 

  10. Cross, M. L., Mortensen, R. R., Kudsk, J., and Gill, H. S. (2002) Dietary intake of Lactobacillus rhamnosus HNOO1 enhances production of both Th1 and Th2 cytokines in antigen- primed mice. Med. Microbiol. Immunol. 191, 49-53 

  11. del Mar Contreras, M., Carron, R., Montero, M. J., Ramos, M., and Recio, I. (2009) Novel casein-derived peptides with antihypertensive activity. Int. Dairy J. 19, 566-573 

  12. Dziuba, J., Minkiewicz, P., Nalecz D., and Iwaniak, A. (1999) Database of biologically active peptide sequences. Nahrung. 43, 190-195 

  13. Erdmann, K., Cheung, B. W., and Schroder, H. (2008) The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J. Nutr. Biochem. 19, 643-654 

  14. Fei, Y. J., Kanai, Y., Nussberger, S., Ganapathy, V., Leibach, F. H., Romero, M. F., Singh, S. K., Boron, W. F., and Hediger, M. A. (1994) Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature 368, 563-566 

  15. Ferranti, P., Traisci, M. V., Picariello, G., Nasi, A., Boschi, V., Siervo, M., Falconi, C., Chianese, L., and Addeo, F. (2004) Casein proteolysis in human milk: tracing the pattern of casein breakdown and the formation of potential bioactive peptides. J. Dairy Res. 71, 74-87 

  16. FitzGerald, R. J. and Meisel, H. (2000) Milk protein-derived peptide inhibitors of angiotensin-I-converting enzyme. Br. J. Nutr. 84, 33-37 

  17. FitzGerald, R. J. and Murray, B. A. (2006) Bioactive peptides and lactic fermentations. Int. J. Dairy Technol. 59, 118-125 

  18. Foltz, M., Meynen, E. E., Bianco, V., van Platerink, C., Koning, T. M. M.G., and Kloek, J. (2007) Angiotensin converting enzyme inhibitory peptides from a lactotripeptide-enriched milk beverage are absorbed intact into the circulation. J. Nutr. 137, 953-958 

  19. Fox, P. F. and Brodkorb, A. (2008) The casein micelle: historical aspects, current concepts and significance. Int. Dairy J. 18, 677-684 

  20. Fuglsang, A., Nilsson, D., and Nyborg, N. C. B. (2003) Characterization of new milk-derived inhibitors of angiotensin converting enzyme in vitro and in vivo. J. Enzyme Inhib. Med. Chem. 18, 407-412 

  21. Ganapathy, V., Leibach, F. H., and Yamada, T. (1999) Protein digestion and assimilation. In: Textbook of Gastroenterology. 3rd ed. Yamada, T. (ed). Lippincott Williams and Wilkins ilkins, Philadelphia, PA, USA, pp. 456-467 

  22. Ganong, W. F. (1997) Section V. In review of medical physiology, Appleton and Lange, Stamford, CT, USA , pp. 437-481 

  23. Garcia-Nebot, M. J., Alegria, A., Barbera, R., Clemente, G., and Romero, F. (2009) Addition of milk or caseinophosphopeptides to fruit beverages to improve iron bioavailability? Food Chem. doi:10.1016/j.foodchem.2009.06.005 

  24. Gobbetti, M., Ferranti, P., Smacchi, E., Goffredi, F., and Addeo, F. (2000) Production of angiotensin-I-convertingenzyme-inhibitory peptides in fermented milks started by Lactobacillus delbrueckii subsp. bulgaricus SS1 and Lactococcus lactis subsp. cremoris FT4. Appl. Environ. Microbiol. 66, 3898-3904 

  25. Gobbetti, M., Stepaniak, L., De Angelis, M., Corsetti, A., and Cagno, R. D. (2002) Latent bioactive peptides in milk proteins: proteolytic activation and significance in dairy processing. Crit. Rev. Food Sci. Nutr. 42, 223-239 

  26. Gray, G. M. and Cooper, H. L. (1971) Protein digestion and absorption. Gastroenterology 61, 535-544 

  27. Grimble, G. K. (2000) Mechanisms of peptide and amino acid transport and their regulation. Furst, P., and Young, V. (eds.), In proteins, peptides and amino acids in enteral nutrition, Karger and Nestec, Basel, Switzerland, pp. 63-88 

  28. Hata, Y., Yamamoto, M., Ohni, M., Nakajima, K., Nakamura, Y., and Takano, T. (1996) A placebo-controlled study of the effect of sour milk on blood pressure in hypertensive subjects. Am. J. Clin. Nutr. 64, 767-771 

  29. Haug, A., Høstmark, A. T., and Harstad, O. M. (2007) Bovine milk in human nutrition-a review. Lipids Health Dis. 6, 25-41 

  30. Hern $\acute{a}$ ndez-Ledesma, B., Amigo, L., Ramos, M., and Recio, I. (2004) Angiotensin converting enzyme inhibitory activity in commercial fermented products. Formation of peptides under simulated gastrointestinal digestion. J. Agric. Food Chem. 52, 1504-1510 

  31. Iwan, M., Jarmolowska, B., Bielikowicz, K., Kostyra, E., Kostyra, H., and Kaczmarski, M. (2008) Transport of i-opioid receptor agonists and antagonist peptides across Caco-2 monolayer. Peptides 29, 1042-1047 

  32. Jauhiainen, T. and Korpela, R. (2007) Milk peptides and blood pressure. J. Nutr. 137, 825S-829S 

  33. Jauhiainen, T., Vapaatalo, H., Poussa, T., Kyronpalo, S., Rasmussen, M., and Korpela, R. (2005) Lactobacillus helveticus fermented milk lowers blood pressure in hypertensive subjects in 24-h ambulatory blood pressure measurement. Am. J. Hypertens. 18, 1600-1605 

  34. Jolles, P., Parker, F., Floch, F., Migliore, D., Alliel, P., Zerial, A., and Werner, G. H. (1981) Immunostimulating substances from human casein. Immunopharmacol. Immunotoxicol. 3, 363-370 

  35. Juillard, V., Guillot, A., Le Bars, D., and Gripon, J. C. (1998) Specificity of milk peptide utilization by Lactococcus lactis. Appl. Environ. Microbiol. 64, 1230-1236 

  36. Kelleher, S. L., Chatterton, D., Nielsen, K., and Lonnerdal, B. (2003) Glycomacropeptide and $\alpha$ -lactalbumin supplementation of infant formula affects growth and nutritional status in infant rhesus monkeys. Am. J. Clin. Nutr. 77, 1261- 1268 

  37. Kilara, A. and Panyam, D. (2003) Peptides from milk proteins and their properties. Crit Rev. Food Sci. Nutr. 43, 607 - 633 

  38. Korhonen, H. (2009) Milk-derived bioactive peptides: from science to applications. J. Funct. Foods 1, 177-187 

  39. Korhonen, H. and Pihlanto-Leppala, A. (2003a) Bioactive peptides: novel applications for milk proteins. Appl. Biotech. Food Sci. Policy 1, 133-144 

  40. Korhonen, H. and Pihlanto-Leppala, A. (2003b) Foodderived bioactive peptides-opportunities for designing future foods. Curr. Pharm. Des. 9, 1297-1308 

  41. Korhonen, H. and Pihlanto-Leppala, A. (2004) Milk-derived bioactive peptides: formation and prospects for health promotion. In hand-book of functional dairy products. Functional foods and nutraceuticals series 6.0, Shortt, C. and 

  42. Kostyra, E., Sienkiewicz-Szlapka, E., Jarmolowska, B., Krawczuk, S., and Kostyra, H. (2004) Opioid peptides derived from milk proteins. Pol. J. Food Nutr. Sci. 13, 25-35 

  43. Leclerc, P. L., Gauthier, S. F., Bachelard, H., Santure, M., and Roy, D. (2002) Antihypertensive activity of caseinenriched milk fermented by Lactobacillus helveticus. Int. Dairy J. 12, 995-1004 

  44. Matar, C., Valdez, J. C., Medina, M., Rachid, M., and Perdigon, G. (2001) Immunomodulating effects of milks fermented by Lactobacillus helveticus and its non-proteolytic variant. J. Dairy Res. 68, 601-609 

  45. Meisel, H. and FitzGerald, R. J. (2003) Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effects. Curr. Pharm. Des. 9, 1289-1295 

  46. Meisel, H. and FitzGerald, R. J. (2000) Opioid peptides encrypted in intact milk protein sequences. Br. J. Nutr. 84, 27-31 

  47. Moller, N. P., Scholz-Ahrens, K. E., Roos, N., and Schrezenmeir, J. (2008) Bioactive peptides and proteins from foods: indication for health effects. Eur. J. Nutr. 47, 171-182 

  48. Nielsen, M. S., Martinussen, T., Flambard, B., Sorensen, K. I., and Otte, J. (2009) Peptide profiles and angiotensin I converting enzyme inhibitory activity of fermented milk products: effect of bacterial strain, fermentation pH, and storage time. Int. Dairy J. 19, 155-165 

  49. Ondetti, M. A. and Cushman, D. W. (1982) Enzymes of the renin-angiotensin system and their inhibitors. Annu. Rev. Biochem. 51, 283-308 

  50. Ong, L. and Shah, N. P. (2008) Release and identification of angiotensin-converting enzyme-inhibitory peptides as influenced by ripening temperatures and probiotic adjuncts in Cheddar cheeses. LWT Food Sci. Technol. 41, 1555-1566 

  51. Otani, H., Kihara, Y., and Park, M. (2000) The immunoenhancing property of a dietary casein phosphopeptide preparation in mice. Food Agr. Immunol. 12, 165 - 173 

  52. Parrot, S., Degraeve, P., Curia, C., and Martial-Gros, A. (2003) In vitro study on digestion of peptides in Emmental cheese: analytical evaluation and influence on angiotensin I converting enzyme inhibitory peptides. Nahrung. 47, 87-94 

  53. Pauliina, J., Jauhiainen, T., Korpela, R., and Vapaatalo, H. (2009) Milk protein-derived bioactive tripeptides Ile-Pro- Pro and Val-Pro-Pro protect endothelial function in vitro in hypertensive rats. J. Funct. Foods 1, 266-273 

  54. Phelan, M., Aherne, A., FitzGerald, R. J., and O'Brien, N. M. (2009) Casein-derived bioactive peptides: biological effects, industrial uses, safety aspects and regulatory status. Int. Dairy J. 19, 643-654 

  55. Pihlanto-Leppala, A., Marnila, P., Hubert, L., Rokka, T., Korhonen, H. J. T., and Karp, M. (1999) The effect of $\alpha$ -lactalbumin and $\beta$ -lactoglobulin hydrolysates on the metabolic activity of Escherichia coli JM103 J. Appl. Microbiol. 87, 540-545 

  56. Quir, A., Davalos, A., Lasunci, M. A., Ramos, M., and Recio, I. (2008) Bioavailability of the antihypertensive peptide LHLPLP: transepithelial flux of HLPLP. Int. Dairy J. 18, 279-286 

  57. Reichelt, K. L. and Knivsberg, A. M. (2003) Can the pathophysiology of autism be explained by the nature of the discovered urine peptides? Nutr. Neurosci. 6, 19-28 

  58. Ruiz, P. A., Hoffmann, M., Szcesny, S., Blaut, M., and Haller, D. (2005) Innate mechanisms for Bifidobacterium lactis to activate transient pro-inflammatory host responses in intestinal epithelial cells after the colonization of germfree 

  59. Saito, T., Nakamura, T., Kitazawa, H., Kawai, Y., and Itoh, T. (2000) Isolation and structural analysis of antihypertensive peptides that exist naturally in Gouda cheese. J. Dairy Sci. 83, 1434-1440 

  60. Sashihara, T., Sueki, N., and Ikegami, S. (2006) An analysis of the effectiveness of heat-killed lactic acid bacteria in alleviating allergic diseases. J. Dairy Sci. 89, 2846-2855 

  61. Satake, M., Enjoh, M., Nakamura, Y., Takano, T., Kawamura, Y., Arai, S., and Shimizu, M. (2002) Transepithelial transport of the bioactive tripeptide, Val-Pro-Pro, in human intestinal Caco-2 cell monolayers. Biosci. Biotechnol. Biochem. 

  62. Saxena, P. R. (1992) Interaction between the renin-angiotensin- aldosterone and sympathetic nervous systems. J. Cardiovasc. Pharmacol. 19 Suppl 6, S80-8 

  63. Seppo, L., Jauhiainen, T., Poussa, T., and Korpela, R. (2003) A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects. Am. J. Clin. Nutr. 77, 326-330 

  64. Shimizu, M. (2004) Food-derived peptides and intestinal functions. Bio. Factors 21, 43-47 

  65. Sienkiewicz-Szlapka, E., Jarmolowska, B., Krawczuk, S., Kostyra, E., Kostyra, H., and Bielikowicz, K. (2009a) Transport of bovine milk-derived opioid peptides across a Caco-2 monolayer. Int. Dairy J. 19, 252-257 

  66. Sienkiewicz-Szlapka, E., Jarmolowska, B., Krawczuk, S., Kostyra, E., Kostyra, H., and Iwan, M. (2009b) Contents of agonistic and antagonistic opioid peptides in different cheese varieties. Int. Dairy J. 19, 258-263 

  67. Silva, S. V. and Malcata, F. (2005) Caseins as source of bioactive peptides. Int. Dairy J. 15, 1-15 

  68. Sipola, M., Finckenberg, P., Korpela, R., Vapaatalo, H., and Nurminen, M. L. (2002) Effect of long-term intake of milk products on blood pressure in hypertensive rats. J. Dairy Res. 69, 103-111 

  69. Sipola, M., Finckenberg, P., Santisteban, J., Korpela, R., Vapaatalo, H., and Nurminen, M. L. (2001) Long-term intake of milk peptides attenuates development of hypertension in spontaneously hypertensive rats. J. Physiol. Pharmacol. 52, 745-754 

  70. Sun, H., Liu, D., Li, S., and Qin, Z. (2009) Transepithelial transport characteristics of the antihypertensive peptide, Lys- Val-Leu-Pro-Val-Pro, in human intestinal Caco-2 cell monolayers. Biosci. Biotechnol. Biochem. 73, 293-298 

  71. Sun, Z., Zhang, Z., Wang, X., Cade, R., Elmir, Z., and Fregly, M. (2003) Relation of β-casomorphin to apnea in sudden infant death syndrome. Peptides 24, 937-943 

  72. Teschemacher, H. (2003) Opioid receptor ligands derived from food proteins. Curr. Pharm. Des. 9, 1331-1344 

  73. Ueno, K., Mizuno, S., and Yamamoto, N. (2004) Purification and characterization of an endopeptidase that has an important role in the carboxyl terminal processing of antihypertensive peptides in Lactobacillus helveticus CM4. Lett. Appl. Microbiol. 39, 313-318 

  74. Vermeirssen, V., Camp, J. V., and Verstraete, W. (2004) Bioavailability of angiotensin I converting enzyme inhibitory peptides. Br. J. Nutr. 92, 357-366 

  75. Yamamoto, N., Akino, A., and Takano, T. (1994) Antihypertensive effect of the peptides derived from casein by an extracellular proteinase from Lactobacillus helveticus CP790. J. Dairy Sci. 77, 917-922 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로