$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

천부 탄성파 굴절법 자료의 수평 분해능 최대화 연구

Maximising the lateral resolution of near-surface seismic refraction methods

초록

굴절법 토모그래피를 구현하는 대부분의 컴퓨터 프로그램은 타우-피 역산 알고리즘을 이용하여 초기 모델을 생성한다. 타우-피 역산 알고리즘은 지층의 수직 분해능에 초점을 맞추기 때문에 전단 영역의 존재를 지시하는 탄성파 속도의 감소와 같은 수평적인 변화를 탐지하는데 실패하는 경우가 자주 발생한다. 본 연구에서는 타우-피 역산 알고리즘이 50미터 혹은 10개 측점 너비의 주요 전단 영역을 탐지하거나 정의하는데 실패하는 사례를 보여준다. 그럼에도 불구하고 대다수의 굴절법 토모그래피 프로그램들이 각 지층의 수직 속도 구배로 탄성파 속도를 매개화한다. 이와는 달리, 일반상반성방법(Generalized Reciprocal Method; GRM) 역산 알고리즘은 개별 지층의 수평 분해능을 강조한다. 본 연구에서는 GRM 역산 알고리즘을 이용하여 50미터 폭의 전단 영역을 성공적으로 탐지하고 정의하는 사례를 보여준다. 전단 영역의 존재는 2차원 선두파 진폭분석과 이후의 3차원 굴절법 탐사의 일환으로 수행된 몇 개의 근거리 직교 탄성파 탐사에 의해 확인된다. 또한. 송신원 기록 진폭분석 결과는 풍화대에서 수직 속도 구배보다는 속도역전이 발생하는 것을 보여준다. 결론적으로 말하면, 모든 탄성파 굴절법 탐사가 실용적으로 정확한 심도추정 결과를 제공하는 것을 목적으로 하면서도 개별 지층의 수평 분해능을 강조하는 기법들이 지질환경공학적인 응용에 더 유용한 결과를 생성한다는 것이다. 향상된 수평 분해능의 장점은 구조적 특징이 탄성파 속도의 변화 크기로부터 인식될 수 있는 2차원 트래버스(tracverse)로 얻어질 수 있다. 또한, 3차원 탐사로부터 얻어진 공간 패턴은 탄성파 속도에서는 고유한 변화나 징후를 보이지 않는 단층과 같은 구조적 특징의 인식을 가능하게 한다.

Abstract

The tau-p inversion algorithm is widely employed to generate starting models with most computer programs, which implement refraction tomography. This algorithm emphasises the vertical resolution of many layers, and as a result, it frequently fails to detect even large lateral variations in seismic velocities, such as the decreases which are indicative of shear zones. This study demonstrates the failure of the tau-p inversion algorithm to detect or define a major shear zone which is 50m or 10 stations wide. Furthermore, the majority of refraction tomography programs parameterise the seismic velocities within each layer with vertical velocity gradients. By contrast, the Generalized Reciprocal Method (GRM) inversion algorithms emphasise the lateral resolution of individual layers. This study demonstrates the successful detection and definition of the 50m wide shear zone with the GRM inversion algorithms. The existence of the shear zone is confirmed by a 2D analysis of the head wave amplitudes and by numerous closely spaced orthogonal seismic profiles carried out as part of a later 3D refraction investigation. Furthermore, an analysis of the shot record amplitudes indicates that a reversal in the seismic velocities, rather than vertical velocity gradients, occurs in the weathered layers. The major conclusion reached in this study is that while all seismic refraction operations should aim to provide as accurate depth estimates as is practical, those which emphasise the lateral resolution of individual layers generate more useful results for geotechnical and environmental applications. The advantages of the improved lateral resolution are obtained with 2D traverses in which the structural features can be recognised from the magnitudes of the variations in the seismic velocities. Furthermore, the spatial patterns obtained with 3D investigations facilitate the recognition of structural features such as faults which do not display any intrinsic variation or 'signature' in seismic velocities.

참고문헌 (44)

  1. Aki, K., and Richards, P. G., 2002, Quantitative Seismology: University Science Books 
  2. Barton, R., and Barker, N., 2003, Velocity imaging by tau-p transformationof refracted traveltimes: Geophysical Prospecting, 51, 195–203. doi: 10.1046/j.1365-2478.2003.00365.x 
  3. Berry, M. J., 1971, Depth uncertainties from seismic first arrival studies: Journal of Geophysical Research, 76, 6464–6468. doi: 10.1029/JB076i0 26p06464 
  4. Cerven\acute{v}, V., and Ravindra, R., 1971, Theory of Seismic Head Waves.University of Toronto Press 
  5. Chopra, S., and Marfurt, K. J., 2007, Seismic Attributes for Prospect Identification and Reservoir Characterization. Geophysical Developments No. 11, SEG, Tulsa 
  6. de Franco, R., 2005, Multi-refractor imaging with stacked refraction convolution section: Geophysical Prospecting, 53, 335–348. doi: 10.1111/j.1365-2478.2005.00478.x 
  7. Domzalski, W., 1956, Some problems of shallow refraction investigations: Geophysical Prospecting, 4, 140–166. doi: 10.1111/j.1365-2478.1956. tb01401.x 
  8. Drijkoningen, G. G., 2000, The usefulness of geophone ground-coupling experiments to seismic data: Geophysics, 65, 1780–1787. doi: 10.1190/1.1444862 
  9. Hagedoorn, J. G., 1955, Templates for fitting smooth velocity functions to seismic refraction and reflection data: Geophysical Prospecting, 3, 325–338. doi: 10.1111/j.1365-2478.1955.tb01379.x 
  10. Hagedoorn, J. G., 1959, The plus-minus method of interpreting seismic refraction sections: Geophysical Prospecting, 7, 158–182. doi: 10.1111/j.1365-2478.1959.tb01460.x 
  11. Hagiwara, T., and Omote, S., 1939, Land creep at Mt Tyausu-Yama(Determination of slip plane by seismic prospecting): Tokyo University Earthquake Research Institute Bulletin, 17, 118–137 
  12. Hawkins, L. V., 1961, The reciprocal method of routine shallow seismicrefraction investigations: Geophysics, 26, 806–819. doi: 10.1190/1.1438961 
  13. Healy, J. H., 1963, Crustal structure along the coast of California fromseismic-refraction measurements: Journal of Geophysical Research,68, 5777–5787 
  14. Ivanov, J., Miller, R. D., Xia, J., Steeples, D., and Park, C. B., 2005a, The inverse problem of refraction travel times, part I; types of geophysicalnonuniqueness through minimization: Pure and Applied Geophysics, 162,447–459. doi: 10.1007/s00024-004-2615-1 
  15. Ivanov, J., Miller, R. D., Xia, J., and Steeples, D., 2005b, The inverse problemof refraction travel times, part II; quantifying refraction nonuniqueness using a three-layer model: Pure and Applied Geophysics, 162, 461–477. doi: 10.1007/s00024-004-2616-0 
  16. Lanz, E., Maurer, H., and Green, A. G., 1998, Refraction tomography over aburied waste disposal site: Geophysics, 63, 1414–1433. doi: 10.1190/1.1444443 
  17. Merrick, N. P., Odins, J. A., and Greenhalgh, S. A., 1978, A blind zonesolution to the problem of hidden layers within a sequence of horizontal ordipping refractors: Geophysical Prospecting, 26, 703–721. doi: 10.1111/j.1365-2478.1978.tb01630.x 
  18. Nettleton, L. L., 1940, Geophysical prospecting for oil. McGraw-Hill Book Company 
  19. Oldenburg, D.W., 1984, An introduction to linear inverse theory: Trans IEEEGeoscience and Remote Sensing, GE-22, 665–674 
  20. Palmer, D., 1980, The generalized reciprocal method of seismic refractioninterpretation. Society of Exploration Geophysicists, 104 pp 
  21. Palmer, D., 1986, Refraction seismics: the lateral resolution of structure andseismic velocity. Geophysical Press 
  22. Palmer, D., 1991, The resolution of narrow low-velocity zones with thegeneralized reciprocal method: Geophysical Prospecting, 39, 1031–1060.doi: 10.1111/j.1365-2478.1991.tb00358.x 
  23. Palmer, D., 1992, Is forward modeling as efficacious as minimum variancefor refraction inversion? Exploration Geophysics, 23, 261–266; 521.doi: 10.1071/EG992261 
  24. Palmer, D., 2001a, Imaging refractors with the convolution section: Geophysics, 66, 1582–1589. doi: 10.1190/1.1487103 
  25. Palmer, D., 2001b, Resolving refractor ambiguities with amplitudes: Geophysics, 66, 1590–1593. doi: 10.1190/1.1487104 
  26. Palmer, D., 2001c, Measurement of rock fabric in shallow refractionseismology: Exploration Geophysics, 32, 307–314. doi: 10.1071/EG01307 
  27. Palmer, D., 2003, Application of amplitudes in shallow seismic refractioninversion. 16th ASEG Conference and Exhibition, Adelaide (Abstract) 
  28. Palmer, D., 2006, Refraction traveltime and amplitude corrections for verynear-surface inhomogeneities: Geophysical Prospecting, 54, 589–604 
  29. Palmer, D., 2007, Is it time to re-engineer geotechnical seismic refractionmethods? 19th ASEG Conference and Exhibition, Perth (Extended Abstract) 
  30. Palmer, D., 2008, Is it time to re-engineer geotechnical seismic refraction methods? First Break, 26, 69–77. doi: 10.1002/9780470432723 
  31. Palmer, D., 2009, Integrating short and long wavelength time and amplitude statics (preprint) 
  32. Palmer, D., Nikrouz, R., and Spyrou, A., 2005, Statics corrections for shallowseismic refraction data: Exploration Geophysics, 36, 7–17. doi: 10.1071/EG05007 
  33. Palmer, D., and Jones, L., 2005, A simple approach to refraction statics withthe generalized reciprocal method and the refraction convolution section:Exploration Geophysics, 36, 18–25. doi: 10.1071/EG05018 
  34. Palmer,D., and Shadlow, J., 2008, Integrating long and shortwavelength staticswith the generalized reciprocal method and the refraction convolution section: Exploration Geophysics, 39, 139–147. doi: 10.1071/EG08019 
  35. Ruijtenberg, P. A., Buchanan, R., and Marke, P., 1992, Three-dimensionaldata improve reservoir mapping. In Sheriff, R.E. ed., Reservoir Geophysics. SEG, Tulsa, 122–130 
  36. Schuster, G. T., and Quintus-Bosz, A., 1993, Wavepath eikonal traveltimeinversion: theory: Geophysics, 58, 1314–1323. doi: 10.1190/1.1443514 
  37. Sj\ddot{o}gren, B., 2000,Abrief study of the generalized reciprocalmethod andsomelimitations of the method: Geophysical Prospecting, 48, 815–834. doi: 10.1046/j.1365-2478.2000.00223.x 
  38. Slichter, L. B., 1932, Theory of the interpretation of seismic travel-time curvesin horizontal structures: Physics, 3, 273–295. doi: 10.1063/1.1745133 
  39. Stefani, J. P., 1995, Turning-ray tomography: Geophysics, 60, 1917–1929.doi: 10.1190/1.1443923 
  40. Treitel, S., and Lines, L., 1988, Geophysical examples of inversion (with agrain of salt): Leading Edge, 7, 32–35. doi: 10.1190/1.1439464 
  41. Whiteley, R. J., 1986, Electrical and seismic response of shallow volcanogenicmassive sulphide ore deposits. Ph D Thesis, University of New SouthWales, 393 pp 
  42. Whiteley, R. J., and Greenhalgh, S. A., 1979, Velocity inversion and theshallow seismic refraction method: Geoexploration, 17, 125–141. doi: 10.1016/0016-7142(79)90036-X 
  43. Zhang, J., and Toks\ddot{o}z, M. N., 1998, Nonlinear refraction traveltime tomography: Geophysics, 63, 1726–1737. doi: 10.1190/1.1444468 
  44. Zhu, X., Sixta, D. P., and Andstman, B. G., 1992, Tomostatics: turning-raytomography + static corrections: Leading Edge, 11, 15–23. doi: 10.1190/1.1436864 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

이 논문 조회수 및 차트

  • 상단의 제목을 클릭 시 조회수 및 차트가 조회됩니다.

DOI 인용 스타일

"" 핵심어 질의응답