$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

뉴런온칩 기술: 미세전극칩시스템과 신경세포 패터닝 기술
Neuron-on-a-Chip technology: Microelectrode Array System and Neuronal Patterning 원문보기

Journal of biomedical engineering research : the official journal of the Korean Society of Medical & Biological Engineering, v.30 no.2, 2009년, pp.103 - 112  

남윤기 (KAIST 바이오및뇌공학과)

Abstract AI-Helper 아이콘AI-Helper

Neuron-on-a-Chip technology is based on advanced neuronal culture technique, surface micropatterning, microelectrode array technology, and multi-dimensional data analysis techniques. The combination of these techniques allowed us to design and analyze live biological neural networks in vitro using r...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 논문에서는 체외에서 배양된 신경네트웍을 연구하기 위하여 연구되는 대표적인 두 가지 뉴런온칩 기술인 미세전극칩기술과 신경세포 패터닝기술의 최근 연구현황에 대하여 고찰해 보겠다.
  • 라는 논문에 처음소개되었다[3]. 이 논문에서 저자들은 전기신호를 발생하는 세포들이 형성하는 네트웍을 비침습적이면서 여러 지적에서 동시다발적으로 측정할 수 있는 편리한 도구로서 미 세 전극칩 을 소개 하였다. 이 칩 은 사진공정 (photolithog raphy) 를 이용하여 세포배양기판 위에 금속선을 패턴하고 절연하여 30개의 독립된 미세전극이 집적되어있었다.
  • 지금까지 우리는 패턴된 신경네트웍을 설계하고 분석하기 위한뉴런온칩 기술로서 마이크로미터 수준의 신경세포들의 생장에 필요한 표면패턴닝과 세포들의 전기생리학적 특성을 연구하기 위한 전기 적 인터 페 이 스인 미 세 전극칩 시스템에 대하여 알아보았다. 패터닝을 통하여 구현된 신경네트웍을 이용한 연구가 우리의 뇌에 대한 이해에 직접적인 연관성을 갖기 위해서는 아직도 풀어야 한 과제들이 많이 있다.
본문요약 정보가 도움이 되었나요?

참고문헌 (82)

  1. C. W. Cotman, D. H. Cribbs, and K. H. Kahler, 'Toward Establishing Neural Networks in Culture,' in Enabling Technologies for Cultured Neural Networks, D. A. Stenger and T. M. McKenna, Eds. San Diego, USA: Academic Press, 1994, pp. 3-22 

  2. M. Taketani and M. Baudry, Advances in Network Electrophysiology: Using Multi-Electrode Array. New York, USA: Springer, 2006. 

  3. C. A. J. Thomas, P. A. Springer, G. E. Loeb, Y. Berwald-Netter, and L. M. Okun, 'A miniature microelectrode array to monitor the bioelectric activity of cultured cells,' Exp. Cell Res., vol. 74, pp. 61-66, 1972 

  4. G. W. Gross, 'Simultaneous single unit recording in vitro with a photoetched laser deinsulated gold multimicroelectrode surface,' IEEE Trans. Biomed. Eng., vol. 26, pp. 273-279, May 1979 

  5. J. Pine, 'Recording action potentials from cultured neurons with extracellular microcircuit electrodes,' J. Neurosci. Methods, vol. 2, pp. 19-31, 1980/2 1980 

  6. J. L. Novak and B. C. Wheeler, 'Recording from the Aplysia abdominal ganglion with a planar microelectrode array,' IEEE Trans. Biomed. Eng., vol. 33, pp. 196-202, February 1986 

  7. S. A. Boppart, B. C. Wheeler, and C. S. Wallace, 'A flexible perforated microelectrode array for extended neural recordings,' IEEE Trans. Biomed. Eng., vol. 39, pp. 37-42, 1992 

  8. U. Egert, B. Schlosshauer, S. Fennrich, W. Nisch, M. Fejtl, T. Knott, T. Muller, and H. Hammerle, 'A novel organotypic long-term culture of the rat hippocampus on substrate-integrated multielectrode array,' Brain Research Protocols, vol. 2, pp. 229-242, 1998 

  9. K. Mathieson, W. Cunningham, J. Marchal, J. Melone, M. Horn, V. O'Shea, K. M. Smith, A. Litke, E. J. Chichilnisky, and M. Rahman, 'Fabricating high-density microarrays for retinal recording,' Microelectron. Eng., vol. 67-68, pp. 520-527, 2003/6 2003 

  10. G. W. Gross, W. Y. Wen, and J. W. Lin, 'Transparent indium-tin oxide electrode patterns for extracellular, multisite recording in neuronal cultures,' J. Neurosci. Methods, vol. 15, pp. 243-252, 1985/0 1985 

  11. B. C. Wheeler and J. L. Novak, 'Current source density estimation using microelectrode array data from the hippocampal slice preparation,' IEEE Trans. Biomed. Eng., vol. 33, pp. 1204-1212, December 1986 

  12. D. A. Borkholder, J. Bao, N. I. Maluf, E. R. Perl, and G. T Kovacs, 'Microelectrode arrays for stimulation of neural slice preparations,' J. Neurosci. Methods, vol. 77, pp. 61-6, Nov 7 1997 

  13. Y. Jimbo, H. P. C. Ronbinson, and A. Kawana, 'Strengthening of synchronized activity by tetanic stimulation in cortical cultures: Application of planar electrode arrays,' IEEE Trans. Biomed. Eng., vol. 45, pp. 1297-1304, November 11 1998 

  14. H. Oka, K. Shimono, R. Ogawa, H. Sugihara, and M. Taketani, 'A new planar multielectrode array for extracellular recording: application to hippocampal acute slice,' J. Neurosci. Methods, vol. 93, pp. 61-67, 1999/10/30 1999 

  15. J. R. Buitenweg, W. L. Rutten, E. Marani, S. K. Polman, and J. Ursum, 'Extracellular detection of active membrane currents in the neuron-electrode interface,' J. Neurosci. Methods, vol. 115, pp. 211-221, Apr 15 2002 

  16. M. O. Heuschkel, M. Fejtl, M. Raggenbass, D. Bertrand, and P. Renaud, 'A three-dimensional multi-electrode array for multisite stimulation and recording in acute brain slices,' J. Neurosci. Methods, vol. 114, pp. 135-148, 2002/3/15 2002 

  17. T. B. DeMarse, D. A. Wagenaar, A. W. Blau, and S. M. Potter, 'The Neurally Controlled Animat: Biological Brains Acting with Simulated Bodies,' Autonomous Robots, vol. 11, pp. 305-310, 2001 

  18. G. T. A. Kovac, 'Introduction to the theory, design, and modeling of thin film microelectrodes for neural interfaces,' in Enabling Technologies for Cultured Neural Networks, D. A. Stenger and T. M. McKenna, Eds. San Diego, CA: Academic Press, 1994, pp. 121-165 

  19. J. C. Chang, G. J. Brewer, and B. C. Wheeler, 'Microelectrode array recordings of patterned hippocampal neurons for four weeks,' Biomed. Microdevices, vol. 2, pp. 245-253, 2000 

  20. J. van Pelt, P. S. Wolters, M. A. Corner, W. L. Rutten, and G. J. Ramakers, 'Long-term characterization of firing dynamics of spontaneous bursts in cultured neural networks,' IEEE Trans. Biomed. Eng., vol. 51, pp. 2051-62, Nov 2004 

  21. S. I. Morefield, E. W. Keefer, K. D. Chapman, and G. W. Gross, 'Drug evaluations using neuronal networks cultured on microelectrode arrays,' Biosensors Bioelectron., vol. 15, pp. 383-396, 2000/10 2000 

  22. S. M. Potter and T. B. DeMarse, 'A new approach to neural cell culture for long-term studies,' J. Neurosci. Methods, vol. 110, pp. 17-24, 2001/9/30 2001 

  23. D. A. Wagenaar, J. Pine, and S. M. Potter, 'Effective parameters for stimulation of dissociated cultures using multi-electrode arrays,' J. Neurosci. Methods, vol. 138, pp. 27-37, 2004/9/30 2004 

  24. M. E. Ruaro, P. Bonifazi, and V. Torre, 'Toward the neurocomputer: image processing and pattern recognition with neuronal cultures,' IEEE Trans. Biomed. Eng., vol. 52, pp. 371-83, Mar 2005 

  25. Y. Nam, J. C. Chang, B. C. Wheeler, and G. J. Brewer, 'Goldcoated microelectrode array with thiol linked self-assembled monolayers for engineering neuronal cultures,' IEEE Trans. Biomed. Eng., vol. 51, pp. 158-165, 2004 

  26. Y. Nam, D. W. Branch, and B. C. Wheeler, 'Epoxy-silane linking of biomolecules is simple and effective for patterning neuronal cultures,' Biosens. Bioelectron., vol. 22, pp. 589-97, Dec 15 2006 

  27. H. Golan, K. Mikenberg, V. Greenberger, and M. Segal, 'GABA withdrawal modifies network activity in cultured hippocampal neurons,' Neural Plas., vol. 7, pp. 31-42, 2000 

  28. D. M. Sokal, R. Mason, and T. L. Parker, 'Multi-neuronal recordings reveal a differential effect of thapsigargin on bicuculline- or gabazine-induced epileptiform excitability in rat hippocampal neuronal networks,' Neuropharmacology, vol. 39, pp. 2408-17, Sep 2000 

  29. I. Suzuki, Y. Sugio, Y. Jimbo, and K. Yasuda, 'Stepwise pattern modification of neuronal network in photo-thermally-etched agarose architecture on multi-electrode array chip for individualcell- based electrophysiological measurement,' Lab on a Chip, vol. 5, pp. 241-7, Mar 2005 

  30. J. V. Selinger, J. J. Pancrazio, and G. W. Gross, 'Measuring synchronization in neuronal networks for biosensor applications,' Biosensors Bioelectron., vol. 19, pp. 675-683, 2004/2/15 2004 

  31. Y. Jimbo, A. Kawana, P. Parodi, and V. Torre, 'The dynamics of a neuronal culture of dissociated cortical neurons of neonatal rats,' Biol. Cybern., vol. 83, pp. 1-20, 2000 

  32. D. A. Wagenaar, R. Madhavan, J. Pine, and S. M. Potter, 'Controlling bursting in cortical cultures with closed-loop multi-electrode stimulation,' The Journal of Neuroscience, vol. 25, pp. 680-8, Jan 19 2005 

  33. R. Segev, Y. Shapira, M. Benveniste, and E. Ben-Jacob, 'Observation and modeling of synchronized bursting in two-dimensional neural network,' Physical Review E, vol. 64, 2001 

  34. G. Shahaf and S. Marom, 'Learning in networks of cortical neurons,' The Journal of Neuroscience, vol. 21, pp. 8782-8788, November 15 2001 

  35. C. D. James, A. J. Spence, N. M. Dowell-Mesfin, R. J. Hussain, K. L. Smith, H. G. Craighead, M. S. Isaacson, W. Shain, and J. N. Turner, 'Extracellular recordings from patterned neuronal networks using planar microelectrode arrays,' IEEE Trans. Biomed. Eng., vol. 51, pp. 1640-1648, 2004 

  36. Y. Nam and B. C. Wheeler, 'Multichannel recording and stimulation of neuronal cultures grown on microstamped poly- D-lysine,' in the 26th Annual International Conference of the IEEE Engineering In Medicine And Biology Society, San Francisco, CA, 2004 

  37. Y. Jimbo, N. Kasai, K. Torimitsu, T. Tateno, and H. Robinson, 'A System for MEA-Based Multisite Stimulation,' IEEE Trans. Biomed. Eng., vol. 50, pp. 241-248, 2004 

  38. Y. Nam, E. A. Brown, J. D. Ross, R. A. Blum, B. C. Wheeler, and S. P. DeWeerth, 'A retrofitted neural recording system with a novel stimulation IC to monitor early neural responses from a stimulating electrode,' J. Neurosci. Methods, vol. 178, pp. 99-102, Mar 30 2009 

  39. B. Eversmann, M. Jenkner, F. Hofmann, C. Paulus, R. Brederlow, B. Holzapfl, P. Fromherz, M. Merz, M. Brenner, M. Schreiter, R. Gabl, K. Plehnert, M. Steinhauser, G. Eckstein, D. Schmitt- Landsiedel, and R. Thewes, 'A 128 CMOS Biosensor Array for Extracellular Recording of Neural Activity,' IEEE Journal of Solid-State Circuits, vol. 38, pp. 2306-2317, 2003. 

  40. W. Dabrowski, P. Grybos, and A. M. Litke, 'A low noise multichannel integrated circuit for recording neuronal signals using microelectrode arrays,' Biosensors Bioelectron., vol. 19, pp. 749-761, 2004/2/15 2004 

  41. F. Heer, W. Franks, A. Blau, S. Taschini, C. Ziegler, A. Hierlemann, and H. Baltes, 'CMOS microelectrode array for the monitoring of electrogenic cells,' Biosensors Bioelectron., vol. 20, pp. 358-366, 2004/9/15 2004 

  42. L. Berdondini, P. D. van der Wal, O. Guenat, N. F. de Rooij, M. Koudelka-Hep, P. Seitz, R. Kaufmann, P. Metzler, N. Blanc, and S. Rohr, 'High-density electrode array for imaging in vitro electrophysiological activity,' Biosensors Bioelectron., vol. 21, pp. 167-174, 2005/7/15 2005 

  43. E. Hulata, R. Segev, and E. Ben-Jacob, 'A method for spike sorting and detection based on wavelet packets and Shannon's mutual information,' J. Neurosci. Methods, vol. 117, pp. 1-12, 2002/5/30 2002 

  44. K. H. Kim and S. J. Kim, 'A wavelet-based method for action potential detection from extracellular neural signal recording with low signal-to-noise ratio,' IEEE Trans. Biomed. Eng., vol. 50, pp. 999-1011, Aug 2003 

  45. K. H. Kim and S. J. Kim, 'Neural spike sorting under nearly 0-dB signal-to-noise ratio using nonlinear energy operator and artificial neural-network classifier,' IEEE Trans. Biomed. Eng., vol. 47, pp. 1406-11, Oct 2000 

  46. B. C. Wheeler, 'Automatic Discrimination of Single Units,' in Methods for Neural Ensemble Recordings, M. A. L. Nicolelis, Ed. New York: CRC, 1999, pp. 61-78 

  47. S. Marom and G. Shahaf, 'Development, learning and memory in large random networks of cortical neurons: lessons beyond anatomy,' Q. Rev. Biophys., vol. 35, pp. 63-87, Feb 2002 

  48. G. W. Gross, B. K. Rhoades, H. M. Azzazy, and M. C. Wu, 'The use of neuronal networks on multielectrode arrays as biosensors,' Biosensors Bioelectron., vol. 10, pp. 553-67, Summer 1995 

  49. R. Madhavan, Z. C. Chao, and S. M. Potter, 'Spontaneous bursts are better indicators of tetanus-induced plasticity than responses to probe stimuli,' in the 2nd International IEEE EMBS Conference on Neural Engineering, Arlington, Virginia, 2005 

  50. R. Segev, I. Baruchi, E. Hulata, and E. Ben-Jacob, 'Hidden neuronal correlations in cultured networks,' Phys. Rev. Lett., vol. 92, p. 118102, Mar 19 2004 

  51. Y. Jimbo, T. Tateno, and H. Robinson, 'Simultaneous Induction of Pathway-Specific Potentiation and Depression in Networks of 

  52. D. Eytan, N. Brenner, and S. Marom, 'Selective adaptation in networks of cortical neurons,' The Journal of Neuroscience, vol. 23, pp. 9349-56, Oct 15 2003 

  53. P. C. Letourneau, 'Cell-to-Substratum Adhesion and Guidance of Axonal Elongation,' Dev. Biol., vol. 44, pp. 92-101, 1975 

  54. D. Kleinfeld, K. H. Kahler, and P. E. Hockberger, 'Controlled outgrowth of dissociated neurons on patterned substrates,' The Journal of Neuroscience, vol. 8, pp. 4098-4120, 1988 

  55. A. Kumar and G. M. Whitesides, 'Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ``ink'' followed by chemical etching,' Appl. Phys. Lett., vol. 63, pp. 2002-2004, 1993/10/04/ 1993. 

  56. A. Bernard, E. Delamarche, S. Heinz, M. Bruno, H. R. Bosshard, and H. Biebuyck, 'Printing Patterns of Proteins,' Langmuir, vol. 14, pp. 2225-2229, 1998 

  57. D. W. Branch, B. C. Wheeler, G. J. Brewer, and D. E. Leckband, 'Long-term maintenance of patterns of hippocampal pyramidal cells on substrates of polyethylene glycol and microstamped polylysine,' IEEE Trans. Biomed. Eng., vol. 47, pp. 290-300, March 2000 

  58. J. C. Chang, 'Technologies for and electrophysiological studies of structured, living, neuronal networks on microelectrode array,' in Elect. and Comp. Eng Urbana, IL: University of Illinois, 2002 

  59. C. D. James, R. C. Davis, L. Kam, H. G. Craighead, M. Isaacson, J. N. Turner, and W. Shain, 'Patterned Protein Layers on Solid Substrates by Thin Stamp Microcontact Printing,' Langmuir, vol. 14, pp. 741-744, 1998 

  60. M. Scholl, C. Sprossler, M. Denyer, M. Krause, K. Nakajima, A. Maelicke, W. Knoll, and A. Offenhausser, 'Ordered networks for rat hippocampal neurons attached to silicon oxide surfaces,' J. Neurosci. Methods, vol. 104, pp. 65-75, 2000 

  61. J. L. Tan, J. Tien, and C. S. Chen, 'Microcontact printing of proteins on mixed self-assembled monolayers,' Langmuir, vol. 18, pp. 519-523, 2002 

  62. D. W. Branch, J. M. Corey, J. A. Weyhenmeyer, G. J. Brewer, and B. C. Wheeler, 'Microstamp patterns of biomolecules for highresolution neuronal networks,' Med Biol Eng Comput, vol. 36, pp. 135-141, Jan 1998 

  63. B. Ilic and H. Craighead, 'Topographical patterning of chemically sensitive biological materials using a polymer-based dry lift off,' Biomed. Microdevices, vol. 2, pp. 371-322, 2000 

  64. A. Folch, B. H. Jo, O. Hurtado, D. J. Beebe, and M. Toner, 'Microfabricated elastomeric stencils for micropatterning cell cultures,' J. Biomed. Mater. Res., vol. 52, pp. 346-53, Nov 2000 

  65. C. Wyart, C. Ybert, L. Bourdieu, C. Herr, C. Prinz, and D. Chatenay, 'Constrained synaptic connectivity in functional mammalian neuronal networks grown on patterned surfaces,' J. Neurosci. Methods, vol. 117, pp. 123-131, 2002/6/30 2002 

  66. J. Vielmetter, B. Stolze, F. Bonhoeffer, and C. Stuermer, 'In vitro assay to test differential substrate affinities of growing axons and migratory cells,' Exp. Brain Res., vol. 81, pp. 283-287, 1990 

  67. N. Li Jeon, H. Baskaran, S. K. Dertinger, G. M. Whitesides, L. Van de Water, and M. Toner, 'Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device,' Nat. Biotechnol., vol. 20, pp. 826-30, Aug 2002 

  68. A. M. Taylor, M. Blurton-Jones, S. W. Rhee, D. H. Cribbs, C. W. Cotman, and N. L. Jeon, 'A microfluidic culture platform for CNS axonal injury, regeneration and transport,' Nat Methods, vol. 2, pp. 599-605, Aug 2005 

  69. G. J. Brewer, J. R. Torricelli, E. K. Evege, and P. J. Price, 'Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination,' J. Neurosci. Res., vol. 35, pp. 567-576, Aug 1 1993 

  70. A. A. Oliva, C. D. James, C. E. Kingman, H. G. Craighead, and G. A. Banker, 'Patterning Axonal Guidance Molecules Using a Novel Strategy for Microcontact Printing,' Neurochem. Res., vol. 28, pp. 1639-1648, 2003/11// 2003 

  71. J. M. Corey, B. C. Wheeler, and G. J. Brewer, 'Micrometer resolution silane-based patterning of hippocampal neurons: Critical variables in photoresist and laser ablation processes for substrate fabrication,' IEEE Trans. Biomed. Eng., vol. 43, pp. 944-955, September 1996 

  72. J. M. Corey, B. C. Wheeler, and G. J. Brewer, 'Compliance of hippocampal neurons to patterned substrate networks,' J. Neurosci. Res., vol. 30, pp. 300-307, 1991 

  73. W. Ma, Q.-Y. Liu, D. R. Jung, P. Manos, J. J. Pancrazio, A. E. Schaffner, J. L. Barker, and D. A. Stenger, “Central neuronal synapse formation on micropatterned surfaces,” Dev. Brain Res., vol. 111, pp. 231-243, 1998 

  74. M. S. Ravenscroft, K. E. Bateman, K. M. Schffer, H. M. Schessler, D. R. Jung, T. W. Schneider, C. B. Montgomery, T. L. Custer, A. E. Schaffner, Q.-Y. Liu, Y. X. Li, J. L. Barker, and J. J. Hickman, 'Developmental neurobiology implications from fabrication and analysis of hippocampal neuronal networks on patterned silane-modified surfaces,' J. Am. Chem. Soc., vol. 120, pp. 12169-12177, 1998 

  75. M. Amiji and K. Park, 'Prevention of protein adsorption and platelet adhesion on surfaces by PEO/PPO/PEO triblock copolymers,' Biomaterials, vol. 13, pp. 682-690, 1992 

  76. M. Matsuzawa, T. Tabata, W. Knoll, and M. Kano, “Formation of hippocampal synapses on patterned substrates of a lamininderived synthetic peptide,” Eur. J. Neurosci., vol. 12, pp. 903-910, 2000 

  77. A. K. Vogt, F. D. Stefani, A. Best, G. Nelles, A. Yasuda, W. Knoll, and A. Offenhausser, 'Impact of micropatterned surfaces on neuronal polarity,' J. Neurosci. Methods, vol. 134, pp. 191-198, 2004/4/30 2004 

  78. D. A. Heller, V. Garga, K. J. Kelleher, T. C. Lee, S. Mahbubani, L. A. Sigworth, T. R. Lee, and M. A. Rea, 'Patterned networks of mouse hippocampal neurons on peptide-coated gold surfaces,' Biomaterials, vol. 26, pp. 883-9, Mar 2005 

  79. Y. Nam, G. J. Brewer, and B. C. Wheeler, 'Development of astroglial cells in patterned neuronal cultures,' J. Biomater. Sci. Polym. Ed., vol. 18, pp. 1091-100, 2007 

  80. Q.-Y. Liu, M. Coulombe, J. Dumm, K. M. Shaffer, A. E. Schaffner, J. L. Barker, J. J. Pancrazio, D. A. Stenger, and W. Ma, 'Synaptic connectivity in hippocampal neuronal networks cultured on micropatterned surfaces,' Dev. Brain Res., vol. 12, pp. 223-231, 2000 

  81. J. C. Chang, G. J. Brewer, and B. C. Wheeler, 'Modulation of neural network activity by patterning,' Biosensors Bioelectron., vol. 16, pp. 527-533, 2001 

  82. J. C. Chang, G. J. Brewer, and B. C. Wheeler, 'Neuronal network structuring induces greater neuronal activity through enhanced astroglial development,' J Neural Eng, vol. 3, pp. 217-26, Sep 2006 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로