$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

실크 피브로인 수화 겔의 형성에 미치는 티로시나아제 및 폴리페놀 화합물의 영향

Effect of Tyrosinase and Polyphenol Compounds on Hydrogelation of Silk Fibroin

Abstract

The formation of silk fibroin (SF) hydrogel can be adjusted by changing physical conditions such as concentration of SF aqueous solution, temperature, pH and salts. In this study, tyrosinase (Tyr), which is an enzyme catalyzing the oxidation of phenols such as tyrosine, was used to decrease the gelation time of SF aqueous solution under a fixed conditions. Tyr oxidizes a broad range of phenols into very reactive o-quinones, and consequently quinones undergo non-enzymatic reactions with various nucleophiles. So it is expected that the gelation time of SF aqueous solution could be decreased by polyphenol compound such as caffeic acid and chlorogenic acid. The color of SF aqueous solutions containing Tyr was changed into deeper yellow with Tyr concentration, and also the gelation time of SF aqueous solution slightly decreased. However, the effect of Tyr concentration on gelation time of SF aqueous solution was not significant due to the locational hindrance of tyrosyl residues in SF. Absorbance at 550 nm also showed conformational transition (random coil to $\beta$-sheet conformation) of SF structure. When polyphenol compounds were added into SF/Tyr aqueous solution, the gelation time slightly decreased. However, the phase separation occurred when polyphenol compounds more than 5 mM were added. The results obtained in this study indicate that enzyme and additives have a potential to regulate the gelation behavior of SF aqueous solution, to some extent.

참고문헌 (27)

  1. C. Vepari and D. L. Kaplan, 'Silk as a Biomaterial', Prog Polym Sci, 2007, 32, 991-1007 
  2. S. Y. Seo, V. K. Sharma, and N. Sharma, 'Mushroom Tyrosinase: Recent Prospects', J Agric Food Chem, 2003, 51, 2837-2853 
  3. A. S. Ferrer, J. N. Rodriguez-Lopez, F. G. Canovas, and F. G. Carmona, 'Tyrosinase : A Comprehensive Review of Its Mechanism', Biochimica et Biophysica Acta 1995, 1247, 1-11 
  4. H. Yamamoto, S. Kuno, A. Nagai, A. Nishida, S. Yamauchi, and K. Ikeda, 'Insolubilizing and Adhesive Studies of Water-soluble Synthetic Model Proteins', Int J Biol Macromol, 1990, 12, 305-310 
  5. J. H. Whang and B. M. Lee, 'Inhibitory Effects of Plant Extracts on Tyrosinase, L-DOPA Oxidation, and Melanin Synthesis', Journal of Toxicology and Environmental Health-Part A-Current Issues, 2007, 70, 393-407 
  6. X. G. Li, L. Y. Wu, M. R. Huang, H. L. Shao, and X. C. Hu, 'Conformational Transition and Liquid Crystalline State of Regenerated Silk Fibroin', Biopolymers, 2008, 88, 497-505 
  7. B. S. Aytar and U. Bakir, 'Preparation of Cross-linked Tyrosinase Aggregates', Process Biochemistry, 2008, 43, 125-131 
  8. U. J. Kim, J. H. Park, C. Li, H. J. Jin, R. Valluzzi, and D. L. Kaplan, 'Structure and Properties of Silk Hydrogels', Biomacromolecules, 2004, 5, 786-792 
  9. K. Y. Lee and D. J. Mooney, 'Hydrogels for Tissue Engineering', Chem Rev, 2001, 101, 1869-1879 
  10. G. Wang, J. J. Xu, L. H. Ye, J. J. Zhu, and H. Y. Chen, 'Highly Sensitive Sensors Based on the Immobilization of Tyrosinase in Chitosan', Bioelectrochemistry, 2002, 57, 33-38 
  11. H. J. Jin and D. L. Kaplan, 'Mechanism of Silk Processing in Insects and Spiders', Nature, 2003, 424, 1057-1061 
  12. T. Kameda, Y. Ohkawa, K. Yoshizawa, E. Nakano, T. Hiraoki, A. S. Ulrich, and T. Asakura, 'Dynamics of the Tyrosine Side Chain in Bombyx mori and Samia cynthia ricini Silk Fibroin Studied by Solid State 2H NMR', Macromolecules, 1999, 32, 8491-8495 
  13. R. Nazarov, H. J. Jin, and D. L. Kaplan, 'Porous 3-D Scaffolds from Regenerated Silk Fibroin', Biomacromolecules, 2004, 5, 718-726 
  14. P. Monti, P. Taddei, G. Freddi, T. Asakura, and M. Tsukada, 'Raman Spectroscopic Characterization of Bombyx mori Silk Fibroin: Raman Spectrum of Silk I', Journal of Raman Spectroscopy, 2001, 32, 103-107 
  15. C. W. G. van Gelder, W. H. Flurkey, and H. J. Wichers, 'Sequence and Structural Features of Plant and Fungal Tyrosinases', Photochemistry, 1997, 45, 1309-1323 
  16. B. M. Min, L. Jeong, K. Y. Lee, and W. H. Park, 'Regenerated Silk Fibroin Nanofibers: Water Vapor-Induced Structural Changes and Their Effects on the Behavior of Normal Human Cells', Macromol Biosci, 2006, 6, 285-292 
  17. I. Gulcin, 'Antioxidant Activity of Caffeic Acid (3,4-dihydroxycinnamic acid)', Toxicology, 2006, 217, 213-220 
  18. J. A. Gerrard, S. E. Fayle, and K. H. Sutton, 'Covalent Protein Adduct Formation and Protein Cross-linking Resulting from the Maillard Reaction between Cyclotene and a Model Food Protein', J Agric Food Chem, 1999, 47, 1183-1188 
  19. A. Matsumoto, J. Chen, A. L. Collete, U. J. Kim, G. H. Altman, P. Cebeand, and D. L. Kaplan, 'Mechanism of Silk Fibroin Sol-Gel Transitions', J Phys Chem B, 2006, 110, 21630-21638 
  20. M. Y. Moridani, H. Scobie, A. Jamshidzadeh, P. Salehi, and P. J. O'brien, 'Caffeic Acid, Chlorogenic Acid, and Dihydrocaffeic Acid Metabolism: Glutathione Conjugate Formation', Drug Metabolism and Disposition, 2001, 29, 1432-1439 
  21. R. Valluzzi, S. Szela, P. Avtges, D. Kirschner, and D. L. Kaplan, 'Methionine Redox Controlled Crystallization of Biosynthetic Silk Spidroin', J Phys Chem B, 1999, 103, 11382-11392 
  22. V. S. Nithianandam and S. Erhan, 'Quinone-amine Polymers: 18. A Novel Method for the Synthesis of Poly(alkyl aminoquinone)s', Polymer, 1998, 39, 4095-4098 
  23. K. Komori, K. Yatagai, and T. Tatsuma, 'Activity Regulation of Tyrosinase by Using Photoisomerizable Inhibitors', J Biotech, 2004, 108, 11-16 
  24. T. Chen, H. D. Embree, L. Q. Wu, and G. F. Payne, 'In Vitro Protein-polysaccharide Conjugation: Tyrosinasecatalyzed Conjugation of Gelatin and Chitosan', Biopolymers, 2002, 64, 292-302 
  25. M. Yu, J. Y. Hwang, and T. J. Deming, 'Role of l-3,4-Dihydroxyphenylalanine in Mussel Adhesive Proteins', J Am Chem Soc, 1999, 121, 5825-5826 
  26. T. Asakura, K. Suita, T. Kameda, S. Afonin, and A. S. Ulrich, 'Structural Role of Tyrosine in Bombyx mori S ilk Fibroin, Studied by Solid-state NMR and Molecular Mechanics on Peptide Prepared as Silk I and II', Magnetic Resonance in Chemistry, 2004, 42, 258-266 
  27. G. D. Kang, K. H. Lee, C. S. Ki, and Y. H. Park, 'Crosslinking Reaction of Phenolic Side Chains in Silk Fibroin by Tyrosinase', Fibers Polym, 2004, 5, 234-238 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • 원문 PDF 정보가 존재하지 않습니다.

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일