• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보


Over the last five years, relaying or multihop techniques have been intensively researched as means for potentially improving link performance of wireless networks. However, the data rates of relays are often limited because they cannot transmit and receive on the same frequency simultaneously. This limitation has come to the attention of researchers, and recently a number of relay techniques have been proposed specifically to improve the data efficiency of relaying protocols. This paper surveys transmission protocols that employ first single relays, then multiple relays and finally multiple antenna relays. A common feature of these techniques is that novel signal processing techniques are required in the relay network to support increased data rates. This paper presents results and discussion that highlight the advantages of these approaches.

참고문헌 (33)

  1. J. N. Laneman and G. W. Wornell, "Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks," IEEE Trans. Inf. Theory, vol. 49, pp. 2415–2425, Oct. 2003 
  2. Y. Fan, C. Wang, J. S. Thompson, and H. V. Poor, "Recovering multiplexing loss through successive relaying using simple repetition coding," IEEE Trans. Wireless. Commun., vol. 6, pp. 4484–4493, Dec. 2007 
  3. M. Dianati, X. Ling, and K. Naik, "A node-cooperative ARQ scheme for wireless ad hoc networks," IEEE Trans. Veh. Technol., vol. 55, pp. 1032–1044, May 2006 
  4. A. Bletsas, A. Khisti, D. P. Reed, and A. Lippman, "A simple cooperative diversity method based on network path selection," IEEE J. Sel. Areas Commun., vol. 24, pp. 659–672, Mar. 2006 
  5. C.Wang, Y. Fan, J. S. Thompson, and H. V. Poor, "A comprehensive study of repetition-coded protocols in multi-user multi-relay networks," revised paper submitted to IEEE Trans. Wireless Commun., Mar. 2009 
  6. H. Zheng, A. Lozano, and M. Haleem, "Multiple ARQ processes for MIMO systems," EURASIP J. App. Signal Process., vol 5, pp. 772–782, 2004 
  7. M. Levorato, S. Tomasin, and M. Zorzi, "Coded cooperation for ad hoc networks with spatial multiplexing," in Proc. IEEE ICC, Glasgow, Scotland, June 2007, pp. 4746–4751 
  8. B. Rankov and A. Wittneben, "Spectral efficient protocols for half-duplex fading relay channels," IEEE J. Sel. Areas Commun., vol. 25, pp. 379–389, Feb. 2007 
  9. Y. Fan, C.Wang, H. V. Poor, and J. S. Thompson, "Cooperative multiplexing: Toward higher spectral efficiency in multi-antenna relay networks," IEEE Trans. Inf. Theory, to appear, 2009 
  10. E. Beres and R. Adve, "Selection cooperation in multi-source cooperative networks," IEEE Trans.Wireless Commun., vol. 7, pp. 118–127, Jan. 2008 
  11. J. N. Laneman and D. N. C. Tse, "Cooperative diversity in wireless networks: Efficient protocols and outage behavior," IEEE Trans. Inf. Theory, vol. 50, pp. 3062–3080, Dec. 2004 
  12. S. Yang and J. C. Belfiore, "Toward the optimal amplify-and-forward cooperative diversity scheme," IEEE Trans. Inf. Theory, vol. 53, pp. 3114–3126, Sept. 2007 
  13. R. U. Nabar, H. Bölcskei, and F. W. Kneubuhler, "Fading relay channels: Performance limits and space-time signal design," IEEE J. Sel. Areas Commun., vol. 22, pp. 1099–1109, Aug. 2004 
  14. I. Krikidis, J. Thompson, S. McLaughlin, and N. Goertz, "Optimization issues for cooperative amplify-and-forward systems over block-fading channels, " IEEE Trans. Veh. Technol., vol. 57, pp. 2868–2884, Sept. 2008 
  15. C. Wang, Y. Fan, and J. S. Thompson, "Recovering multiplexing loss through concurrent decode-and-forward (DF) relaying," Wirel. Pers. Commun., vol. 48, pp. 193–213, Jan. 2009 
  16. M. O. Hasna and M. S. Alouini, "Optimal power allocation for relayed transmissions over Rayleigh-fading channels," IEEE Trans. Wireless Commun., vol. 3, pp. 1999–2004, Nov. 2004 
  17. D. Chen and J. N. Laneman, "The diversity-multiplexing tradeoff for the multi-access relay channel," in Proc. CISS, Princeton, NJ, USA, Mar. 2006, pp. 1324–1328 
  18. B. Wang, J. Zhang, and A. Host-Madsen, "On capacity of MIMO relay channel," IEEE Trans. Inf. Theory, vol. 51, pp. 29–43, Jan. 2005 
  19. I. Hammerstrom and A. Wittneben, "On the optimal power allocation for nonregenerative OFDM relay links," in Proc. IEEE ICC, Istanbul, Turkey, June 2006, pp. 4463–4468 
  20. Y. Fan, H. V. Poor, and J. S. Thompson, "Cooperative multiplexing in a half duplex relay network: Performance and constraints," in Proc. ACCCC, Monticello, IL, USA, Sept. 2007 
  21. Y. Fan and J. S. Thompson, "MIMO configurations for relay channels: Theory and practice," IEEE Trans. Wireless Commun., vol. 6, pp. 1774–1786, May 2007 
  22. A. Sendonaris, E. Erkip, and B. Aazhang, "User cooperation diversity—part I: System description," IEEE Trans. Commun., vol. 51, pp. 1927–1938, Nov. 2003 
  23. B. Zhao and M. Valenti, "Practical relay networks: A generalization of hybrid ARQ," IEEE J. Sel. Areas Commun., vol. 23, pp. 7–18, Jan. 2005 
  24. N. Prasad andM. K. Varanasi, "Diversity and multiplexing tradeoff bounds for cooperative diversity protocols," in Proc. IEEE ISIT, Chicago, IL, USA, June 2004, p. 268 
  25. M. Yuksel and E. Erkip, "Multi-antenna cooperative wireless systems: A diversity multiplexing tradeoff perspective," IEEE Trans. Inf. Theory, vol. 53, pp. 3371–3393, Oct. 2007 
  26. M. Newton, J. S. Thompson, and J. M. Naden, "Wireless systems resource allocation in the downlink of cellular multi-hop networks," Eur. Trans. Telecom., vol. 19, pp. 299–314, Apr. 2008 
  27. C. Hucher, G. Rekaya, and J. C. Belfiore, "Adaptive amplify-and-forward cooperation," in Proc. IEEE ISIT, Nice, France, July 2007, pp. 2706–2710 
  28. K. Azarian, H. E. Gamal, and P. Schniter, "On the achievable diversitymultilexing tradeoff in half-duplex cooperative channels," IEEE Trans. Inf. Theory, vol. 51, pp. 4152–4172, Dec. 2005 
  29. L. Dai and K. B. Letaief, "Throughput maximization of ad-hoc wireless networks using adaptive cooperative diversity and truncated ARQ," IEEE Trans. Commun., vol. 56, pp 1907–1918, Nov. 2008 
  30. O. Munoz-Medina, J. Vidal, and A. Agustin, "Linear transceiver design in nonregenerative relays with channel state information," IEEE Trans. Signal Process., vol. 55, pp. 2593–2604, June 2007 
  31. X. Bao and J. Li, "Decode-amplify-forward (DAF): A new class of forwarding strategy for wireless relay channels," in Proc. IEEE SPAWC, New York, USA, June 2005 
  32. A. Sendonaris, E. Erkip, and B. Aazhang, "User cooperation diversity—part II: Implementation aspects and performance analysis," IEEE Trans. Commun., vol. 51, pp. 1939–1948, Nov. 2003 
  33. X. Tang and Y. Hua, "Optimal design of non-regenerative MIMO wireless relays," IEEE Trans. Wireless Commun., vol. 6, pp. 1398–1407, Apr. 2007 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음


원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일