$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

TBTCl의 저질 및 체내 축적에 따른 대복 Gomphina veneriformis 소화선의 조직학적 반응

Histological Response of Digestive Gland of Gomphina veneriformis with TBTCl Accumulation in Sediment and Soft Tissue

Abstract

This study involves a relationship between butyltins concentrations and histopathological changes of the digestive gland in the equilateral venus, Gomphina veneriformis exposed to TBTCl of 0.4, 0.6 and 0.8 ${\mu}g/L$ for 36 weeks. In the sediment, total butyltin (${\sum}BT$) concentration was detected ND~7.54 (0.4 ${\mu}g/L$), ND~9.76 (0.6 ${\mu}g/L$), 1.22~13.13 ${\mu}g/L$ (0.8 ${\mu}g/L$), respectively. Especially, TBT level in 0.8 ${\mu}g/L$ group was the highest for 36 weeks. In the soft tissue, total butyltin (${\sum}BT$) concentration of the exposure group was 10.14~12.75 (control), 479.29~1,286.56 (0.4 ${\mu}g/L$), 563.32~2,154.82 (0.6 ${\mu}g/L$) and 1,317.70~2,132.60 ${\mu}g/L$ (0.8 ${\mu}g/L$), respectively. Ratio of TBT to ${\sum}BT$ of the tissue of 0.8 ${\mu}g/L$ kept the lowest level for 36 weeks. The ${\sum}BT$ concentrations of sediment were correlated with ${\sum}BT$ concentrations in the tissue. In the exposure groups, necrosis and atrophy of columnar epithelial cell and collapse of epithelial layer in the digestive tubule. And there was a reduction in stain affinity of basophilic cell. Such histological degenerations was more severe in digestive tubule of 0.8 ${\mu}g/L$ group.

참고문헌 (41)

  1. 環境廳水質保全局水質管理課. 外因性內分􂸼攪亂化學 物質調査暫定マニュアル(水質, 底質, 水生生物), 1998; X1-X7 
  2. Amouroux D, Tessier E and Donard OFX. Volatilization of organotin compounds from estuarine and coastal environments, Environ Sci Technol 2000; 34: 988-995 
  3. Gomez-Ariza JL, Morales E and Giraldez I. Uptake and elimination of tributyltin in clams, Venerupis decussata, Mar Environ Res 1999; 47: 399-413 
  4. Guolan H and Yong W. Effects of tributyltin chrolide on marine bivalve mussels, Water Res 1995; 29: 1877-1884 
  5. Laughlin Jr RB, French W and Guard HE. Accumulation of bis (tributyltin) oxide by the marine mussel Mytilus edulis, Environ Sci Techol 1986; 20: 884-890 
  6. Pekkarinen M. Scanning electron microscopy, whole-mount histology, and histochemistry of two Anodontine glochidia (Bivalvia: Unionidae), J Zool 1996; 74(11): 1964-1973 
  7. Salazar MH. Mortality, growth and bioaccumulation in mussels exposed to TBT: difference between the laboratoryand the field, Oceans '89. Proceedings, 2, 1989; 530-536 
  8. Marigomez I, Soto M, Orbea A, Cancio I and Cajaraville MP. Elsevier Oceanography Series No 70, In: Oceanography and Marine Environment in the Basque Country, Borja A and Collins M eds, Elsevier Amsterdam, 2004; 335-364 
  9. Shim WJ, Oh JR, Kahng SH, Shim JH and Lee SH. Accumulation of tributyl- and triphenyltin compounds in Pacific oyster, Crassostrea gigas, from the Chinhae bay system, Korea, Arch Environ Contam Toxicol 1998; 35: 41-47 
  10. Gomez-Ariza JL, Giraldez I and Morales E. Temporal fluctuations of tributyltin in the bivalve Venerupis decussata at five stations in southwest Spain, Envion Pollut 2000; 108: 279-290 
  11. Moore MN and Allen JI. A computational model of the digestive gland epithelial cell of the marine mussel and its simulated responses to aromatic hydrocarbons, Mar Environ Res 2002; 54: 579-584 
  12. Laughlin Jr RB and French W. Concentration dependence of bis (tributyltin) oxide accumulation in the mussel, Mytilus edulis, Environ Toxicol Chem 1988; 7: 1021-1026 
  13. Salazar MH and Salazar SM. In-situ bioassays using transplanted mussels: I. Estimating chemical exposure and bioeffects with bioaccumulation and growth. In: Environmental Toxicology and Risk Assessment. 3rd volume, ASTM STP 1218, Hughes JS, Biddinger GR and Mones E eds, American Society for Testing and Materials Philadelphia 1995; 216-241 
  14. Siah A, Pellerin J, Amiard J-C, Pelletier E and Viglino L. Delayed gametogenesis and progesterone levels in softshell clams (Mya arenaria) in relation to in situ contamination to organotins and heavy metals in the St. Lawrence River (Canada), Comp Biochem Physiol C 2003; 135: 145-156 
  15. Yang R, Zhou Q, Liu J and Jiang G. Butyltins compounds in molluscs from Chinese Bohai coastal waters, Food Chem 2006b; 97: 637-643 
  16. Adelman D, Hinha KR and Pilson MEQ. Biogeochemistry of butyltins in an enclosed marine ecosystem, Envrion Sci Technol 1990; 24: 1027-1032 
  17. van Slooten KB and Tarradllas J. Accumulation, depuration and growth effects of tributyltin in the freshwater bivalve Dreissena polymorpha under field conditions, Environ Toxicol Chem 1994; 13: 755-762 
  18. Mason AZ and Jenkins KD. Metal detoxification in aquatic organisms. In: Metal Speciation and Bioavailability on Aquatic Systems, Tessier A and Turner DR eds, John Wiley & Sons New York, 1995; 479-608 
  19. Otludil B, Cengiz EI, Yildirim MZ, Unver O and Ünlü E. The effects of endosulfan on the great ramshorn snail, Planorbariua corneus (Gastropoda, Pulmonata): a histopathological study, Chemosphere 2004; 56: 707-716 
  20. Zorita I, Oritiz-Zarragoitia M, Soto M and Cajaraville MP. Biomarkers in mussels from a coper site gradient (Visnes, Norway): An integrated biochemical, histochemical and histological study, Aquat Toxicol 2006; 78S: S109-S116 
  21. Watling HR and Watling RJ. Comparative effects of metals on the filtering rate of brown mussel, Perna perna, Bull Environ Contam Toxicol 1982; 29: 651-657 
  22. Depledge MH and Hopkin SP. Methods to assess effects on brackish, estuarine and near-coastal water organnisms, In: Methods to Assess the Effects of Chemicals on Ecosystems, Linthurst RA, Bourdeau P and Tardiff RG eds, Wiley Chichester UK, 1995; 125-149 
  23. Drury RAB and Wallington EA. 1980. Carleton's histological technique, Oxford University Press Oxford, 1980; 1-520 
  24. Hwang HM, Oh JR, Kahng SH and Lee KW. Tributyltin compounds in mussels, oysters and sediments of Chinhae bay, Korea Mar Environ Res 1999; 47: 61-70 
  25. Salazar SM, Davidson BM, Salazar MH, Stang PM and Meyers-Schulte KJ. Effects of tributyltin on marine organisms: Field assessment of a new site-specific bioassay system. In: Oceans 87, Vol 4. Proceedings International Organotin Symposium. Marine Technology Society, Washington, DC, 1987; 1461-1470 
  26. Quinn B, Gagn$\acute{e}$ F, Costello M, McKenzie C, Wilson J and Mothersill C. The endocrine disrupting effect of municipal effluent on the zebra mussel (Dreissena polymorpha), Aquat Toxicol 2004; 66: 279-292 
  27. Harino H, O’Hara SCM, Burt GR, Chesman BS and Langston WJ. Distribution of organotin compounds in tissue of mussels Mytilus edulis and clams Mya arenaria, Chemosphere 2005; 58: 877-881 
  28. Gosling EM. Morphology of bivalves, In: Bivalves Molluscs; Biology, Ecology and Culture, Blackwell Malden, 2003; 7-43 
  29. Kure LK and Depledge MH. Accumulation of organotin in Littorina littorea and Mya arenaria from Danish coastal water, Environ Pollut 1994; 84: 149-157 
  30. Strand J and Asmund G. Tributyltin accumulation and effects in marine molluscs from West Greenland, Environ Pollut 2003; 123: 31-37 
  31. de Mora SJ, King NG and Miller MC. Tributyltin and total tin in marine sediments; profiles and apparent rate of TBT degradation, Envrion Technol Lett 1989; 10: 901-908 
  32. Morrison CM. Histology and cell ultrastructure of the mantle and mantle lobes of the Estern oyster, Crassostrea virginica Gmelin: A summary atlas, Amer Malac Bull 1993; 10(1): 1-24 
  33. Kim CK, Kim DH, Lee JS and Lee KT. Influence of heavy metals, ammonia and organotin compounds on the survival of arkshell clams, Scapharca broughtonii, Korean J Mal 2004; 20: 93-105 
  34. Gregory MA, George RC, Marshall DJ, Anandraj A and Mcclurg PT. The effects of mercury exposure on the surface morphology of gill filaments in Perna perna (Mollusca: Bivalvia), Mar Pollut Bull 1999; 39: 116-121 
  35. 해양수산부. 해양환경공정시험방법, 2005; 127-130 
  36. Evans SM, Leksono T and Mckinnell PD. Tributyltin pollution: A diminshing problem following legislation limiting the use of TBT based anti-fouling paints, Mar Poll Bull 1995; 30: 14-21 
  37. Shim WJ, Oh JR, Kahng SH, Shim JH and Lee SH. Horizontal distribution of butyltins in surface sediments from an enclosed bay system, Korea Environ Pollut 1999; 106: 351-357 
  38. Thain JE. Toxicity of TBT to bivalves: effects on reproduction, growth and survival, Oceans 1986; 18: 1306-1313 
  39. Yang R, Zhou Q and Jiang G. Butyltin accumulation in the marine clam Mya arenaria: An evaluatio of its suitability for monitoring butyltin pollution, Chemosphere 2006a; 63: 1-8 
  40. Stewart C and Thompson JAJ. Extensive butyltin contamination in southwestern coastal British Columbia, Canada, Mar Pollut Bull 1994; 28: 601-606 
  41. Hebel DK, Jones MB and Depledge MH. Responses of crustaceans to contaminant exposure: a holistic approach, Estuar Csttl Shelf Sci 1997; 44: 177-184 

이 논문을 인용한 문헌 (1)

  1. Shin, Jun-Jae ; Kim, Si-Wouk ; Cho, Hoon ; Kim, Seong-Jun 2012. "Examination of Bioconcentration of a New Algicide, Thiazolidinedione Derivative (TD49) to Marine Organisms" KSBB Journal, 27(2): 91~96 

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일