$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

목단피(牧丹皮)가 손상된 성상신경세포의 CD81 및 GFAP의 발현에 미치는 영향
The Effect of the Moutan Radicis Cortex on Expression of CD81 and GFAP in Injured Astrocyte 원문보기

대한한방내과학회지 = The journal of internal Korean medicine, v.30 no.1, 2009년, pp.24 - 35  

문성진 (원광대학교 한의과대학 내과학교실) ,  성기문 (원광대학교 한의과대학 내과학교실) ,  임진영 (원광대학교광주병원 재활의학과) ,  송봉근 (원광대학교 한의과대학 내과학교실)

Abstract AI-Helper 아이콘AI-Helper

Object : In conditions of brain infarction, irreversible axon damage occurs in the central nerve system (CNS), because gliosis makes physical and mechanical barriers. If gliosis formation could be suppressed, irreversible axon damage would be reduced. This could mean that an injured CNS could be reg...

주제어

참고문헌 (39)

  1. Dijkstra, S., Geisert, E.E., Gispen, W.H., Bar, P.R., Joosten, E.A., Upregulation of CD81 (target of the antiproliferative antibody, TAPA) by reactive microglia and astrocytes afterspinalcord injury in therat.J.Comp. Neurol.2000;428:266-77. 

  2. Stichel CC, Muller HW. The CNS lesion scar: new vistas on an old regeneration barrier. Cell Tissue Res.1998;294:1-9. 

  3. Reier PJ, Houle JD. The glial scar : its bearing on axonal elongation and transplantation approaches to CNS repair. Adv Neurol.1988;47:87-138. 

  4. DusartI, Schwab ME. Secondary cell death and the inflammatory reaction after dorsal hemisection of the rat spinalcord. Eur J Neurosci. 1994;6:712-24. 

  5. Geisert EE Jr, Yang L, Irwin MH. Astrocyte growth, reactivity, and the target of the antiproliferative antibody, TAPA. J Neurosci. 1996;16:5478-87. 

  6. Irwin, M.H., Geisert, E.E.,The upregulation of a glial cell surface antigen at the astrocytic scar in the rat. Neurosci. Lett. 1993;154:57-60. 

  7. Song BK, Geisert GR, Vazquez-Chona F, Geisert EE Jr. Temporal regulation of CD81 following retinal injury in the rat. Neurosci Lett. 2003;338(1):29-32. 

  8. Bethea JR, Nagashima H, Acosta MC, Briceno C, Gomez F, Marcillo AE, Loor K, Green J, Dietrich WD. Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats. J Neurotrauma.1999;16(10):851-63. 

  9. Guth L, Albuquerque EX, Deshpande SS, Barrett CP, Donati EJ, Warnick JE. Ineffectiveness of enzyme therapy on regeneration in the transected spinal cord of the rat. J Neurosurg. 1980;52(1) :73-86. 

  10. Puchala E, Windle WF. The possibility of structural and functional restitution after spinalcord injury. A review. Exp Neurol. 1977;55(1):1-42. 

  11. Gimenez y Ribotta M, Rajaofetra N, Morin- Richaud C, Alonso G, Bochelen D, Sandillon F, Legrand A, Merse lM, Privat A. Oxysterol (7beta-hydroxycholesteryl-3-oleate) promotes serotonergic reinnervation in the lesioned rat spinal cord by reducing glial reaction. J Neurosci Res.1995; 41(1): 79-95. 

  12. Zhang SX, Geddes JW, Owens JL, Holmberg EG. X-irradiation reduceslesion scarring at the contusion site of adult rat spinal cord. Histol Histopathol. 2005;20(2):519-30. 

  13. Broude E, McAtee M, Kelley MS, Bregman BS. Fetal spinal cord transplants and exogenous neurotrophic support enhance c-Jun expression in mature axotomized neurons after spinal cord injury. Exp Neurol.1999;155(1) :65-78. 

  14. Lee IW. Stem cells and Neurosurgery. J korean neurosurgery soc. 2003;33:1-12. 

  15. Menet V, Gimenez Y Ribotta M, Sandillon F, Privat A. GFAP null astrocytes are afavorable substrate for neuronal survival and neurite growth. Glia. 2000;31(3):267-72. 

  16. Dijkstra S, Duis S, Pans IM, Lankhorst AJ, Hamers FP, Veldman H, Bar PR, Gispen WH, Joosten EA, Geisert EE Jr. Intraspinal administration of an antibody against CD81 enhances functional recovery and tissue sparing after experimental spinal cord injury. Exp Neurol. 2006;202(1):57-66. 

  17. Lau CH, Chan CM, ChanYW, Lau KM, Lau TW, Lam FC, Law WT, Che CT, Leung PC, Fung KP, Ho YY, Lau CB. Pharmacological investigations of the anti-diabetic effect of Cortex Moutan an ditsactive component paeonol. Phytomedicine. 2007 Nov; 14(11):778-84. 

  18. Jung CH, Zhou S, Ding GX, Kim JH, Hong MH, Shin YC, Kim GJ, Ko SG. Antihyperglycemic activity of herb extracts on streptozotocin-induced diabeticrats. Biosci Biotechnol Biochem. 2006 Oct; 70(10):2556-9. 

  19. Kang DG, Moon MK, Choi DH, Lee JK, Kwon TO,Lee HS.Vasodilatory and anti-inflammatory effects of the1,2,3,4,6-penta-O -galloyl-beta-D-glucose (PGG) via a nitric oxide-cGMP pathway.Eur J Pharmacol.2005 Nov7;524(1-3):111-9. 

  20. Lee SJ, Lee IS, Mar W. Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 activity by 1,2,3,4,6-penta-O-galloyl-beta-Dglucose in murine macrophage cells. Arch Pharm Res. 2003Oct;26(10): 832-9. 

  21. Hsieh CL, Cheng CY, Tsai TH, Lin IH, Liu CH, Chiang SY, Lin JG, Lao CJ, Tang NY. Paeonol reduced cerebral infarction involving the superoxide anion and microglia activation in ischemia-reperfusion injured rats. J Ethnopharmacol. 2006 Jun 30;106(2):208-15. 

  22. Humphrey MF, Chu Y, Mann K, Rakoczy P. Retinal GFAP and bFGF expression after multiple argon laser photocoagulation injuries assessed by both immunoreactivity and mRNA levels. Exp Eye Res. 1997;64:361-9. 

  23. Silver, J, Miller, J.H, Regeneration beyond the glialscar. Nat. Rev. Neurosci. 2004;5:146-56. 

  24. Stichel, C.C, Muller, H.W, TheCNS lesion scar.new vistas on an old regeneration barrier. Cell Tissue Res.1998;294:1-9. 

  25. Eng LF, Reier PJ, Houle JD. Astrocyte activation and fibrous gliosis. glial fibrillary acidic protein immunostaining of astrocytes following intraspinal cord grafting of fetal CNS tissue. Prog Brain Res.1987;71:439-55. 

  26. Bahr M, Przyrembe lC, Bastmeyer M. Astrocytes from adult rat optic nerves are nonpermissive for regenerating retinal ganglion cell axons. Exp Neurol.1995;131(2):211-20. 

  27. Fawcett JW, Housden E, Smith-Thomas L, Meyer RL. The growth of axons in three-dimensional astrocyte cultures. Dev Biol.1989 ;135(2):449-58. 

  28. McKeon RJ, Hoke A, Silver J. Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars. Exp Neurol. 1995;136(1):32-43. 

  29. Eng LF, Ghirnikar RS, Lee YL, Glialfibrillary acidic protein : GFAP-thirty-one-years(1969-2000). Neurochemical Research.2000;25:1439-51. 

  30. Brook GA, Plate D, Franzen R, Martin D, Moonen G, Schoenen J, Schmitt AB, Noth J, Nacimiento W. Spontaneous longitudinally orientated axonal regeneration is associated with the Schwann cell framework within the lesion site following spinal cord compression injury of the rat. J Neurosci Res.1998;53:51-65. 

  31. Berditchevski F, Tolias KF, Wong K, Carpenter CL, Hemler ME. A novel link between integrins, transmembrane-4 superfamily proteins (CD63 and CD81), and phosphatidylinositol 4-kinase. J Biol Chem.1997;272:2595-8. 

  32. Geisert EE, Jr, Abel HJ, Fan L, Geisert GR. Retinal pigment epithelium of the rat express CD81, the target of the anti-proliferative antibody (TAPA). Invest Ophthalmol Vis Sci. 2002;43:274-80. 

  33. Peduzzi, J.D., Grayson, T.B., Fischer, F.R., Geisert, E.E., The expression of TAPA (CD81) correlates with the reactive response of astrocytes in the developing rat CNS. Exp. Neurol.1999;160:460-8. 

  34. Dijkstra, S., Geisert, E.E., Dijkstra, C.D., Bar, P.R., Joosten, E.A., CD81 and microglial activation invitro : proliferation, phagocytosis and nitric oxide production. J. Neuroimmunol. 2001;114:151-9. 

  35. Sullivan CD, Geisert EE, Jr. Expression of rat target of the antiproliferative antibody (TAPA) in the developing brain. J Comp Neurol.1998;396:366-80. 

  36. Ribotta MG, Menet V, Privat A. Glialscar and axonal regeneration in the CNS : lessons from GFAP and vimentin transgenic mice. Acta Neurochir Suppl. 2004;89:87-92. 

  37. Shin MK. Clinical Herbalogy, Younglim Publishing Co: Seoul; 2002,p.385-7. 

  38. Guo BL, Basang D, Xiao PG, Hong DY. Research on the quality of original plants and material medicine of Cortex Paeoniae. Zhongguo Zhong Yao Za Zhi. 2002;27:654-7. 

  39. Shimada Y, Yokoyama K, Goto H, Sekiya N, Mantani N, Tahara E, Hikiami H, Terasawa K. Protective effect of keishi-bukuryo-gan and its constituent medicinal plants against nitric oxide donor-induced neuronal death in cultured cerebellar granule cells. Phytomedicine. 2004 Jul;11(5):404-10. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로