$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

Optimization of seal geometries can reduce significantly the energetic losses in a hydraulic seal [1], especially for high head runner turbine. In the optimization process, a reliable prediction of the losses is needed and CFD is often used. This paper presents numerical experiments to determine an adequate CFD model for straight, labyrinth and stepped hydraulic seals used in Francis runners. The computation is performed with a finite volume commercial CFD code with a RANS low Reynolds turbulence model. As numerical computations in small radial clearances of hydraulic seals are not often encountered in the literature, the numerical results are validated with experimental data on straight seals and labyrinth seals. As the validation is satisfactory enough, geometrical optimization of hydraulic seals using CFD will be studied in future works.

참고문헌 (15)

  1. Rhode, D.L., S.H. Ko, and G.L. Morrison, 1994, "Leakage optimization of labyrinth seals using a Navier-Stokes code," Tribology Transactions, Vol. 37, No. 1, pp. 105-110. 
  2. Rhode, D.L., J.W. Johnson, and D.H. Broussard, 1997, "Flow visualization and leakage measurements of stepped labyrinth seals : Part 1-Annular Groove," Journal of Turbomachinery, Vol. 119, No. 4, pp. 839-843. 
  3. Rhode, D.L., J.W. Johnson, and D.H. Broussard, 1997, "Flow visualization and leakage measurements of stepped labyrinth seals : Part 2-Sloping Surfaces," Journal of Turbomachinery, Vol. 119, No. 4, pp. 844-848. 
  4. Lang, J.H., 1964, "Investigation of discharge coefficient for different labyrinth seal," Dominion Engineering Works, 53-1256BT. 
  5. Vu, T., 1976, "Analysis of straight seal tests," Dominion Engineering Works, 1230-7. 
  6. Vu, T., 1978, "Viscous seal : theoretical analysis and computer program," Dominion Engineering Works, 1230-18. 
  7. Vu, T., 1978, "Straight seal analysis and computer program," Dominion Engineering Works, 1230-17. 
  8. Elrod, H.G., 1973, "Some refinements of the theory of the viscous screw pump," ASME Trans. J. Lubric. Technol., Vol. 95, No. 1, pp. 82-93. 
  9. Elrod, H.G. and C.W. Ng, 1967, "A Theory of Turbulent Films and its Application to Bearings," ASME J. Lubr. Technol., Vol. 89, No. 1, pp. 347-362. 
  10. Rhode, D.L. and G.H. Nail, 1992, "Computation of cavity by cavity flow development in generic labyrinth seals," Journal of Tribology, Vol. 114, No., pp. 47-51. 
  11. Asok, S.P., et al., 2007, "Neural network and CFD-based optimization of square cavity and curved cavity static labyrinth seals," Tribology International, Vol. 40, No. 7, pp. 1204-1216. 
  12. Schramm, V., et al., 2004, "Shape optimization of a labyrinth seal applying the simulated annealing method," International Journal of Rotating Machinery, Vol. 10, No. 5, pp. 365-371. 
  13. Morrison, G.L., M.C. Johnson, and G.B. Tatterson, 1991, "3-D laser anemometer measurements in a labyrinth seal," Journal of Engineering for Gas Turbines and Power, Vol. 113, No. 1, pp. 119-125. 
  14. Chochua, G., W. Shyy, and J. Moore, 2002, "Computational modeling for honeycomb stator gas annular seal," Int. J. Heat Mass Transfer, Vol. 45, No. 9, pp. 1849-1963. 
  15. Kaye, J. and E.C. Elgar, 1958, "Model of adiabatic and diabatic fluid flow in annulus with an inner rotating cylinder," Transactions of ASME, Vol. 80, No. 1, pp. 753-765. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

DOI 인용 스타일