$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

토양의 물리화학적 성질에 의한 소나무림 임지생산력 추정

Estimation of Site Productivity of Pinus densiflora by the Soil Physico-chemical Properties

Abstract

We estimated site productivity for unstocked land based on the relationship between site index (i.e., average height of dominant trees at fixed age) and soil physico-chemical properties of Pinus densiflora stands. Site index relates to a direct method of determining a tree's response to a specific environment such as forest soil and climate conditions. We selected 78 sites in 22 P. densiflora stands of central temperate forest zone, and sampled soils for physicochemical analyzing. And 13 properties of soils were statistically treated by stepwise regression. In the degree of contribution of the variables to site index, the highly effective variables in A horizon were OM, clay content, sand content, available $P_2O_5$, and Exch. $Ca^{{+}{+}}$ inorder, and in B horizon T.N., O.M., Soil pH, cation exchange capacity(C.E.C.), and sand content in order. In both A and B horizon of the soil for P. densiflora stands, the variables commonly contributed to the site index were sand content and OM. These results may be useful to provide not only important criteria for establishment of Pinus densiflora stand sespecially in unstocked land but also aguidance for reforestation.

저자의 다른 논문

참고문헌 (20)

  1. Graney, D. H. and E. R. Ferguson. 1971. Site quality relationships for short leaf pine in the Boston Mountain of Arkansas. Forest Science 17(1):16-22 
  2. Klock, G. O., R. G. Cline, and D. N. Swanston. 1984. Forest handbook (2nd ed.). p. 83-96. A Wiley-Interscience Publication, New York, USA 
  3. Korea Forest Research Institute. 1992. Elementary Statistics for forest research. The Research Report 70, Korea Forestry Research Institute, Seoul, Korea 
  4. Korea Forest Research Institute. 2002. Standard forestry tentative execution outline, 696pp. Korea Forestry Research Institute, Seoul, Korea. 
  5. Mitsuda, Y., S. Ito, and S. Sakamoto. 2007. Predicting the site index of sugi plantations from GIS-derived environmental factors in Miyazaki Prefecture. J. For. Res. 12:177-186 
  6. Son, Y. M., J. S. Hong, and Y. G. Chung. 1990. Multivariate analysis between physico-chemical properties of soil and growth of Pinus thunbergii stands. Journal of the Institute of Agricultural Resources Utilization, Gyeongsang National University 24:95-106 
  7. Chung, Y. G. 1980. Effects of soil properties and environmental factors on the growth of Chamaecyparis obtusa Sieb. et Zucc. Journal of the Institute of Agricultural Resources Utilization, Gyeongsang National University 14:1-29 
  8. Ma, S. K. 1974. On the height growth of several species growing in the Middle Korea. Journal of Korean Forest Society 21:39-45 
  9. Lee, D. S., and Y. G. Chung. 1986. Estimation of productivity for Quercus variabilities stand by forest environmental factors. Journal of Korean Forest Society 75:1-18 
  10. Hotta M. 1990. Forestry technical handbook. Forestry Science and Technology Institute, p. 445-474. Tokyo, Japan 
  11. Chung, I. K. 1981. Analysis on the relation between the morphological physical and chemical properties of forest soils and the growth of the Pinus koraiensis Sieb. et Zucc. and Larix leptolepis Gord . by quantification. Journal of Korean Forest Society 53:1-26 
  12. Fontes L., M. Tome, F. Thompson, A. Yeomans, J. S. Luis, and P. Savill. 2003. Modelling the Douglas-fir(Pseudotsuga menziesii (Mirb.) Franco) site index from site factorsin Portugal. Forestry 76(5):491-507 
  13. Johnson, J. E., C. L. Haag, J. G., Bockheim, and G. G. Erdmann. 1987. Soil-site relationships and soil characteristics associated with even-age red maple(Acer rubrum)stands in Wisconsin and Michigan. Forest Ecology and Management 21:75-89 
  14. Corona, P., R. Scotti, and N. Tarchiani. 1998. Relationship between environmental factors and site index in Douglas-fir plantations in central Italy. Forest Ecology and Management 110:195-207 
  15. Herman, F. R., R. O. Curtis, and D. J. DeMars. 1978. Height growth and site index estimates for noble fir in high-elevation forests of the Oregon Washington Cascades. USDA Forest Service Research Paper PNW 243. Pacific Northwest Forest and Range Experiment Station, Portland, Oregon. 
  16. Verhoevena, J. T. A., W. Koerselmanb, and A. F. M. Meulemanb. 1996: Nitrogen- or phosphorus-limited growth in herbaceous, wet vegetation: relations with atmospheric inputs and management regimes. Trends in Ecology & Evolution 11(12):494-497 
  17. Kim T. H. et al. 1988. Studies on the classification of forest soil. The Research Reports of the Forestry Research Institute 37, Korea Forestry Research Institute, Seoul, Korea 
  18. Shin, M. Y., H. K. Won, S. W. Lee., and Y. Y. Lee. 2007. Site index equations and estimation of productive areas for major pine species by climatic zones using environmental factors. Korean Journal of Agricultural and Forest Meteorology 9(3):179-187 
  19. Alban, D. H. 1974. Red pine site index in Minnesota as related to soil and foliar nutrients. Forest Science 20(3):261-269 
  20. Hansen, R. S. and M. V. Bilan. 1989. Height growth of loblolly and slash pine plantations in the northern post-oak belt of Texas. Southern Journal of Applied Forestry 13(1):5-8 

이 논문을 인용한 문헌 (1)

  1. Shin, Moon-Hyun ; Lim, Joo-Hoon ; Kong, Woo-Suk 2014. "Relationship between Environment Factors and Distribution of Pinus densiflora after Fire in Goseong, Gangwon Province, Korea" 環境復元綠化 = Journal of the Korean Society of Environmental Restoration Technology, 17(2): 49~60 

DOI 인용 스타일