$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Effects of Dietary Supplementation with a Compound Composed of Caffeine, Capsaicin, Sesamine, L-Carnitine, Banaba and Lotus on Human Autonomic Nervous System Activity and Lipid Oxidation 원문보기

Journal of food science and nutrition, v.14 no.3, 2009년, pp.173 - 178  

Kang, Sung-Hwun (Laboratory of Exercise Biochemistry, Department of Physical Education, Dong-A University) ,  Shin, Ki-Ok (Laboratory of Exercise Biochemistry, Department of Physical Education, Dong-A University)

Abstract AI-Helper 아이콘AI-Helper

This study was conducted to determine if supplementation with a compound composed of caffeine (50 mg), capsaicin (75 mg), sesamine (30 mg), L-carnitine (300 mg), banaba (50 mg) and lotus (10 mg) enhanced human autonomic nervous activities (ANS) associated with thermogenic sympathetic activity and fa...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • 2. Changes in VLF of ANS in healthy males after consumption of the test tablets at rest for a total of 120-min and for 5-min during exercise as determined using heart rate variability power spectral analysis. There were no significant differences among test trials.
  • 3. Changes in the LF of ANS in healthy males after consumption of test tablets at rest for 120-min and for 5-min during exercise as determined using heart rate variability power spectral analysis. There were no significant differences among test trials.
  • In this study, we evaluated the effects of a combination of caffeine, capsaicin, sesamine, L-carnitine, banaba and lotus components on ANS activity and energy metabolism in healthy males during resting and exercise periods. Specifically, we evaluated the effects of test tablets containing the aforementioned compounds to determine if they induced an increase in cardiac ANS activity associated with energy metabolism that led to fat oxidation.
  • Subjects came to the laboratory at 9:00 am after eating a traditional Japanese breakfast that consisted of 70% carbohydrates, 20% protein and 10% fat at least 2 hr before arriving at the laboratory on four different occasions. The ANS activity and energy metabolism were measured as baseline data prior to ingestion of the compound which consisted of caffeine (50 mg), capsaicin (75 mg), sesamine (30 mg), L-carnitine (300 mg), banaba (50 mg) and lotus (10 mg), or placebo.
  • Therefore, in this study, HRV power spectral analysis was used to evaluate energy metabolism and ANS activity, particularly thermogenic-sympathetic function in response to treatment with tablets that contained of a combination of components that could be taken as a convenient nutritional supplement.
  • To evaluate the ANS activity, we analyzed the VLF, LF, HI, and total power by integrating the spectra of each respective bandwidth. The mean heart rate of each 256-s segment was also calculated with the standard error.

대상 데이터

  • Ten healthy male [mean (SE) 21.2 (1.0) yr, 172.8 (2.4) cm, 62.2 (2.0) kg and % fat 14.6 (1.0) (estimated by bio-impedance method)] students from K University volunteered for this experiment. All experimental procedures were explained in detail to each subject, who then signed a statement of informed consent.

데이터처리

  • Statistical differences between treatments were assessed using two-way analysis of variance (ANOVA) with repeated measurements for time, treatment and time×treatment as well as one-way ANOVA to evaluate the effects of the test tablet after 10 days.
본문요약 정보가 도움이 되었나요?

참고문헌 (36)

  1. Nishijima Y, Ikeda T, Takamatsu M, Kiso Y, Shibata H, Fushiki T, Moritani T. 2002. Influence of caffeine ingestion on autonomic nervous activity during endurance exercise in humans. Euro J Appl Physiol 87: 475-480 

  2. Shin KO, Ko KJ. 2007. Alterations of human autonomic nervous system activity on capsaicin ingestion and variants of UCP1 and $\beta$ 3-adrenergic receptor polymorphism. J Life Sci 17: 1075-1081 

  3. Shin KO, Kim HJ, Kang SH. 2008. Alterations of heart rate variability upon $\beta$ 3-adrenergic receptor polymorphism and combined capsaicin, sesamin, and L-carnitine in humans. J Life Sci 18: 291-297 

  4. Liu F, Kim J, Li Y, Liu X, Li J, Chen X. 2001. An extract of Lagerstroemia speciosa L. has insulin-like glucose uptake- stimulatory and adipocyte differentiation-inhibitory activities in 3T3-L1 cells. J Nutr 131: 2242-2247 

  5. Suzuki Y, Unno T, Ushitani M, Hayashi K, Kakuda T. 1999. Antiobesity activity of extracts from Lagerstroemia speciosa L. leaves on female KK-AY mice. J Nutr Sci Vitaminol 45: 791-795 

  6. Lin J, Lai Y, Liu C, Wu A. 2007. Effects of lotus plumule supplementation before and following systemic administration of lipopolysaccharide on the splenocyte responses of BALB/c mice. Food Chem Toxicol 45: 486-493 

  7. Yen G, Duh P, Su H. 2005. Antioxidant properties of lotus seed and its effects on DNA damage in human lymphocytes. Food Chem 89: 379-385 

  8. Bray GA. 1985. Complications of obesity. Annal Internal Med 103: 1052-1062 

  9. Macdonald IA. 1995. Advances in our understanding of the role of the sympathetic nervous system in obesity. Inter J Obesity 19: S2-S7 

  10. Young JB, Macdonald IA. 1992. Sympathoadrenal activity in human obesity: heterogeneity of findings since 1980. Inter J Obesity 16: 959-967 

  11. Moritani T, Hayashi T, Shinohara M, Mimasa F, Shibata M. 1993. Comparison of sympatho-vagal function among diabetic patients, normal controls and endurance athletes by heart rate spectral analysis. J Sport Med Sci 7: 31-39 

  12. Moritani T, Hayashi T, Shinohara M, Mimasa F, Masuda I, Nakao K. 1995. Sympatho-vagal activities of NIDDM patients during exercise as determined by heart rate spectral analysis. In Glucose Fluxes, Exercise and Diabetes. Kawamori R, Vranic M, Horton ES, Kubota M, eds. Smith-Gordson Ltd., London, England. p 91-96 

  13. Oida E, Moritani T, Yamori Y. 1997. Tone-entropy analysis on cardiac recovery after dynamic exercise. J Appl Physiol 82: 1794-1801 

  14. Akselrod S, Gordon D, Ubel FA, Shannon DC, Barger AC, Cohen RJ. 1981. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-by-beat cardiovascular control. Science 213: 220-222 

  15. Akselrod S, Gordon D, Madwed JB, Snidman NC, Shannon DC, Cohen RJ. 1985. Hemodynamic regulation: investigation by spectral analysis. Am J Physiol 249: H867-875 

  16. Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, Sandrone G, Malfatto G, Dell'Orto S, Piccaluga E, Turiel M, Baselli G, Cerutti S, Malliani A. 1986. Power spectral analysis of heart rate and arterial pressure variability as a marker of sympatho-vagal interation in man and conscious dog. Circ Res 59: 178-193 

  17. Hyndman BW, Kitney RI, Sayers BM. 1971. Spontaneous rhythms in physiological control systems. Nature 233: 339-341 

  18. Kitney RI. 1975. An analysis of the nonlinear behaviour of the human thermal vasomotor control system. J Theor Biol 52: 231-248 

  19. Matsumoto T, Miyawaki T, Ue H, Kanda T, Zenji C, Moritani T. 1999. Autonomic responsiveness to acute cold exposure in obese and non-obese young women. Inter J Obesity 23: 793-800 

  20. Lusk G. 1924. Animal calorimetry: analysis of the oxidation of mixtures of carbohydrate and fat. J Biol Chem 59: 41-42 

  21. Suzuki T, Iwai K. 1984. Constituents of red pepper spices: Chemistry, biochemistry, pharmacology, and food science of the pungent principle of capsicum species. In The Alkaloids. Brossi A, ed. Academic Press, New York, USA. Vol 263, p 227-229 

  22. Watanabe T, Kawada T, Kurosawa M, Sato A, Iwai K. 1988. Adrenal sympathetic efferent nerve and catecholamine secretion excitation caused by capsaicin in rats. Am J Physiol 255: E23-E27 

  23. Paolisso G, Manzella D, Ferrara N, Gambardella A, Abete P, Tagliamonte MR, De Lucia D, Furgi G, Picone C, Gentile S, Rengo F, Varricchio M. 1997. Glucose ingestion affects cardiac ANS in healthy subjects with different amounts of body fat. Am J Physiol 273: E471-478 

  24. Hirose N, Doi F, Ueki T, Akazawa K, Chijiiwa K, Sugano M, Akimoto K, Shimizu S, Yamada H. 1992. Suppressive effect of sesamin against 7, 12-dimethylbenz anthracene induced rat mammary carcinogenesis. Anticancer Res 12:1259-1266 

  25. Matsumura Y, Kita S, Morimoto S, Akimoto K, Furuya M, Oka N, Tanaka T. 1995. Antihypertensive effect of sesamin I. Protection against deoxycortiocosterone acetate- salt-induced hypertension and cardiovascular hypertrophy. Biol Pharm Bull 18: 1016-1019 

  26. Ashakumary L, Rouyer I, Takahashi Y, Ide T, Fukuda N, Aoyama T, Hshimoto T, Mizugaki M, Sugano M. 1999. Sesamin, a sesame lignan, is a potent inducer of hepatic fatty acid oxidation in the rat. Metabolism 48: 1303-1313 

  27. Hirose Y, Inoue T, Nishihara K, Sugano M, Akimoto K, Shimizuand S, Yamada H. 1991. Inhibition of cholesterol absorption and synthesis in rats by sesamin. J Lipid Res 32: 629-638 

  28. Gu JY, Wakizono Y, Tsujita A, Lim BO, Nonaka M, Yamada K, Sugano M. 1995. Effects of sesamin and alpha- tocopherol, individually or in combination, on the polyunsaturated fatty acid metabolism, chemical mediator production, and immunoglobulin levels in Sprague- Dawley rats. Biosci Biotech Biochem 59: 2198-2202 

  29. Voet D, Voet JG. 1994. Biochemistry. Wiley, New York, NY, USA. p 179-184 

  30. Jakobs C, Kneer J, Martin D, Boulloche J, Brivet M, Poll-The BT, Saudubray JM. 1997. In vivo stable isotope studies in three patients affected with mitochondrial fatty acid oxidation disorders: Limited diagnostic use of $^{13}C$ fatty acid breath test using bolus technique. Euro J Pedia 156: 78-82. 

  31. Costill DL, Dalsky GP, Fink WJ. 1978. Effects of caffeine ingestion on metabolism and exercise performance. Med Sci Sports Exer 10: 155-158 

  32. Kovacs EMR, Stegen JHCH, Brouns F. 1998. Effect of caffeinatd drinks on substrate metabolism, caffeine excretion, and performance. J Appl Physiol 85: 709-715 

  33. Graham TE, Spriet LK. 1991. Performance and metabolic responses to a high caffeine dose during prolonged exercise. J Appl Physiol 71: 2292-2298 

  34. Bangsbo J, Jacobsen K, Nordberg N, Christensen NJ, Graham T. 1992. Acute and habitual caffeine ingestion and metabolic responses to steady-state exercise. J Appl Physiol 72: 1297-1303 

  35. Kalmar JM, Cafarelli E. 1999. Effects of caffeine on neuromuscular function. J Appl Physiol 87: 801-808 

  36. Van-Soeren MH, Graham TE. 1998. Effect of caffeine on metabolism, exercise endurance, and catecholamine responses after withdrawal. J Appl Physiol 85: 1493-1501 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로