$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Effects of Dietary Supplementation with a Compound Composed of Caffeine, Capsaicin, Sesamine, L-Carnitine, Banaba and Lotus on Human Autonomic Nervous System Activity and Lipid Oxidation

Journal of food science and nutrition v.14 no.3 , 2009년, pp.173 - 178  
Abstract

This study was conducted to determine if supplementation with a compound composed of caffeine (50 mg), capsaicin (75 mg), sesamine (30 mg), L-carnitine (300 mg), banaba (50 mg) and lotus (10 mg) enhanced human autonomic nervous activities (ANS) associated with thermogenic sympathetic activity and fat utilization. Ten healthy college males (21.2$\pm$1.0 yr) volunteered for this experiment. Autonomic nervous activities associated with energy metabolism were examined at 30 min intervals for a total of 120-min while at rest and every 5-min during exercise at 50% of the ventilation threshold before and after intake of the compound or placebo with 100 ml of water for 10 days. In addition, heart rate variability power spectral analysis was used to assess human autonomic nervous activities. The results indicated that there were no significant differences in heart rate during rest and exercise among trials. Furthermore, the autonomic nervous activity tended to increase after 10-days of consumption of the test compounds during the experimental period, but the differences did not reach statistical significance. However, before and after the compound test trial there was a significantly higher respiratory gas exchange ratio (rest 0: 0.83$\pm$0.01 vs. rest 3: 0.89$\pm$0.02, p<0.05), carbohydrate oxidation (CHO) rate (rest 0: 44.57$\pm$5.83 vs. rest 2: 63.86$\pm$5.91%, p<0.05) and a lower fat oxidation rate (rest 0: 55.43$\pm$5.83 vs. rest 2: 36.14$\pm$5.91%, p<0.05. In conclusion, the results of the present study suggested that the compound composed of caffeine, capsaicin, sesamine, L-carnitine, banaba and lotus components that was evaluated in this study did not induce a significant increase in human autonomic nervous activities or lipolysis, even though the individual components have been reported to induce increased fat oxidation.

저자의 다른 논문

참고문헌 (36)

  1. Nishijima Y, Ikeda T, Takamatsu M, Kiso Y, Shibata H, Fushiki T, Moritani T. 2002. Influence of caffeine ingestion on autonomic nervous activity during endurance exercise in humans. Euro J Appl Physiol 87: 475-480 
  2. Shin KO, Ko KJ. 2007. Alterations of human autonomic nervous system activity on capsaicin ingestion and variants of UCP1 and $\beta$3-adrenergic receptor polymorphism. J Life Sci 17: 1075-1081 
  3. Shin KO, Kim HJ, Kang SH. 2008. Alterations of heart rate variability upon $\beta$3-adrenergic receptor polymorphism and combined capsaicin, sesamin, and L-carnitine in humans. J Life Sci 18: 291-297 
  4. Liu F, Kim J, Li Y, Liu X, Li J, Chen X. 2001. An extract of Lagerstroemia speciosa L. has insulin-like glucose uptake- stimulatory and adipocyte differentiation-inhibitory activities in 3T3-L1 cells. J Nutr 131: 2242-2247 
  5. Suzuki Y, Unno T, Ushitani M, Hayashi K, Kakuda T. 1999. Antiobesity activity of extracts from Lagerstroemia speciosa L. leaves on female KK-AY mice. J Nutr Sci Vitaminol 45: 791-795 
  6. Lin J, Lai Y, Liu C, Wu A. 2007. Effects of lotus plumule supplementation before and following systemic administration of lipopolysaccharide on the splenocyte responses of BALB/c mice. Food Chem Toxicol 45: 486-493 
  7. Yen G, Duh P, Su H. 2005. Antioxidant properties of lotus seed and its effects on DNA damage in human lymphocytes. Food Chem 89: 379-385 
  8. Bray GA. 1985. Complications of obesity. Annal Internal Med 103: 1052-1062 
  9. Macdonald IA. 1995. Advances in our understanding of the role of the sympathetic nervous system in obesity. Inter J Obesity 19: S2-S7 
  10. Young JB, Macdonald IA. 1992. Sympathoadrenal activity in human obesity: heterogeneity of findings since 1980. Inter J Obesity 16: 959-967 
  11. Moritani T, Hayashi T, Shinohara M, Mimasa F, Shibata M. 1993. Comparison of sympatho-vagal function among diabetic patients, normal controls and endurance athletes by heart rate spectral analysis. J Sport Med Sci 7: 31-39 
  12. Moritani T, Hayashi T, Shinohara M, Mimasa F, Masuda I, Nakao K. 1995. Sympatho-vagal activities of NIDDM patients during exercise as determined by heart rate spectral analysis. In Glucose Fluxes, Exercise and Diabetes. Kawamori R, Vranic M, Horton ES, Kubota M, eds. Smith-Gordson Ltd., London, England. p 91-96 
  13. Oida E, Moritani T, Yamori Y. 1997. Tone-entropy analysis on cardiac recovery after dynamic exercise. J Appl Physiol 82: 1794-1801 
  14. Akselrod S, Gordon D, Ubel FA, Shannon DC, Barger AC, Cohen RJ. 1981. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-by-beat cardiovascular control. Science 213: 220-222 
  15. Akselrod S, Gordon D, Madwed JB, Snidman NC, Shannon DC, Cohen RJ. 1985. Hemodynamic regulation: investigation by spectral analysis. Am J Physiol 249: H867-875 
  16. Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, Sandrone G, Malfatto G, Dell'Orto S, Piccaluga E, Turiel M, Baselli G, Cerutti S, Malliani A. 1986. Power spectral analysis of heart rate and arterial pressure variability as a marker of sympatho-vagal interation in man and conscious dog. Circ Res 59: 178-193 
  17. Hyndman BW, Kitney RI, Sayers BM. 1971. Spontaneous rhythms in physiological control systems. Nature 233: 339-341 
  18. Kitney RI. 1975. An analysis of the nonlinear behaviour of the human thermal vasomotor control system. J Theor Biol 52: 231-248 
  19. Matsumoto T, Miyawaki T, Ue H, Kanda T, Zenji C, Moritani T. 1999. Autonomic responsiveness to acute cold exposure in obese and non-obese young women. Inter J Obesity 23: 793-800 
  20. Lusk G. 1924. Animal calorimetry: analysis of the oxidation of mixtures of carbohydrate and fat. J Biol Chem 59: 41-42 
  21. Suzuki T, Iwai K. 1984. Constituents of red pepper spices: Chemistry, biochemistry, pharmacology, and food science of the pungent principle of capsicum species. In The Alkaloids. Brossi A, ed. Academic Press, New York, USA. Vol 263, p 227-229 
  22. Watanabe T, Kawada T, Kurosawa M, Sato A, Iwai K. 1988. Adrenal sympathetic efferent nerve and catecholamine secretion excitation caused by capsaicin in rats. Am J Physiol 255: E23-E27 
  23. Paolisso G, Manzella D, Ferrara N, Gambardella A, Abete P, Tagliamonte MR, De Lucia D, Furgi G, Picone C, Gentile S, Rengo F, Varricchio M. 1997. Glucose ingestion affects cardiac ANS in healthy subjects with different amounts of body fat. Am J Physiol 273: E471-478 
  24. Hirose N, Doi F, Ueki T, Akazawa K, Chijiiwa K, Sugano M, Akimoto K, Shimizu S, Yamada H. 1992. Suppressive effect of sesamin against 7, 12-dimethylbenz anthracene induced rat mammary carcinogenesis. Anticancer Res 12:1259-1266 
  25. Matsumura Y, Kita S, Morimoto S, Akimoto K, Furuya M, Oka N, Tanaka T. 1995. Antihypertensive effect of sesamin I. Protection against deoxycortiocosterone acetate- salt-induced hypertension and cardiovascular hypertrophy. Biol Pharm Bull 18: 1016-1019 
  26. Ashakumary L, Rouyer I, Takahashi Y, Ide T, Fukuda N, Aoyama T, Hshimoto T, Mizugaki M, Sugano M. 1999. Sesamin, a sesame lignan, is a potent inducer of hepatic fatty acid oxidation in the rat. Metabolism 48: 1303-1313 
  27. Hirose Y, Inoue T, Nishihara K, Sugano M, Akimoto K, Shimizuand S, Yamada H. 1991. Inhibition of cholesterol absorption and synthesis in rats by sesamin. J Lipid Res 32: 629-638 
  28. Gu JY, Wakizono Y, Tsujita A, Lim BO, Nonaka M, Yamada K, Sugano M. 1995. Effects of sesamin and alpha- tocopherol, individually or in combination, on the polyunsaturated fatty acid metabolism, chemical mediator production, and immunoglobulin levels in Sprague- Dawley rats. Biosci Biotech Biochem 59: 2198-2202 
  29. Voet D, Voet JG. 1994. Biochemistry. Wiley, New York, NY, USA. p 179-184 
  30. Jakobs C, Kneer J, Martin D, Boulloche J, Brivet M, Poll-The BT, Saudubray JM. 1997. In vivo stable isotope studies in three patients affected with mitochondrial fatty acid oxidation disorders: Limited diagnostic use of $^{13}C$ fatty acid breath test using bolus technique. Euro J Pedia 156: 78-82. 
  31. Costill DL, Dalsky GP, Fink WJ. 1978. Effects of caffeine ingestion on metabolism and exercise performance. Med Sci Sports Exer 10: 155-158 
  32. Kovacs EMR, Stegen JHCH, Brouns F. 1998. Effect of caffeinatd drinks on substrate metabolism, caffeine excretion, and performance. J Appl Physiol 85: 709-715 
  33. Graham TE, Spriet LK. 1991. Performance and metabolic responses to a high caffeine dose during prolonged exercise. J Appl Physiol 71: 2292-2298 
  34. Bangsbo J, Jacobsen K, Nordberg N, Christensen NJ, Graham T. 1992. Acute and habitual caffeine ingestion and metabolic responses to steady-state exercise. J Appl Physiol 72: 1297-1303 
  35. Kalmar JM, Cafarelli E. 1999. Effects of caffeine on neuromuscular function. J Appl Physiol 87: 801-808 
  36. Van-Soeren MH, Graham TE. 1998. Effect of caffeine on metabolism, exercise endurance, and catecholamine responses after withdrawal. J Appl Physiol 85: 1493-1501 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일