$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Rhodobacter sphaeroides 2.4.1 내의 pyridine nucleotide와 quinone pool의 redox 상태와 광합성기구의 합성과의 상관관계

Relationship of the Redox State of Pyridine Nucleotides and Quinone Pool with Spectral Complex Formation in Rhodobacter sphaeroides 2.4.1

생명과학회지 = Journal of life science, v.19 no.7 = no.111, 2009년, pp.852 - 858  

고인정 (KAIST 부설 한국과학영재학교) ,  오정일 (부산대학교 미생물학과)

초록
AI-Helper 아이콘AI-Helper

호흡전자전달계의 cytochrome bc$_1$ complex 또는 cytochrome c oxidase가 기능을 하지 않는 Rhodobacter sphaeroides mutant 내에서 pyridine nucleotide[NAD(P)H와 NAD(P)$^+$]의 농도와 redox 상태는 wild type과 비교할 때 큰 변화가 없었다. 높은 산소분압 조건에서 키운 Rhodobacter sphaeroides cbb$_3$ oxidase mutant 내에서 PrrBA two-component system에 의해서 조절되는 puf 오페론의 발현은 pyridine nucleotide나 전자전달계의 ubiquinone/ubiquinol pool의 redox 상태의 변화에 의해 유도된 것이 아니다. R. sphaeroides cytochrome bc$_1$ complex mutant를 이용하여 광합성기구 합성에 대한 cbb$_3$ cytochrome c oxidase의 억제 효과는 ubiquinone/ubiquinol pool의 redox 변화에 의해 간접적으로 일어나는 것이 아님을 증명하였다.

Abstract AI-Helper 아이콘AI-Helper

The homeostasis of the pyridine nucleotide pool [NAD(P)H and NAD(P)$^+$] is maintained in Rhodobacter sphaeroides mutant strains defective in the cytochrome bci complex or the cytochrome c oxidases in terms of its concentration and redox state. Aerobic derepression of the puf operon, whic...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

성능/효과

  • sphaeroides [24]. In good agree­ment with the previous result, the /xzfoperon encoding the apoproteins of the photosynthetic reaction center and light harvesting complex I was derepressed in the BCI and CBB3 knock-out mutant strains of R, spt^erddes grown under 30% O2 conditions (Table 2). As depicted in Fig.
  • In this study, we provide evidence that the redox state of neither NAD(P)+/NAD(P)H nor Q/QH2 pool did greatly affect spectral complex formation in R. sphaeroides and that the ebbs oxidase has a negative effect on PS gene expression even in the absence of electron flow through itself.
  • to the decrease in kinase activity of RegB [33]. This result allowed the authors to suggest that the redox state of the Q/QH2 pool of the respiratory ETC is shifted to the oxidized state under aerobic conditions, leading to the inhibition of RegB kinase activity. If the RegB histidine kinase senses the oxygen tension in the environment in such a way, more pho­tosynthetic apparatus must be synthesized in the AA3 mu­tant strain than the CBB3 mutant strain when both the strains are grown under aerobic conditions because the aa3 cytochrome c oxidase is the major cytochrome c oxidase in R sphaeroides grown under aerobic conditions (approximately 70% of cytochrome c oxidase activity detected in R.
  • To rule out the possibility that aerobic derepression of pufin the CBB3 mutant strain grown aerobically was the re­sult of changes in the redox state of the Q/QH2 pool, we overexpressed the ccoNOQP operon in the BC1 mutant strain in which the electron transfer through the cytochrome c oxi­ dases is completely blocked due to the inactivation of the cytochrome bci complex (Fig. 1) and determined the levels of spectral complexes. The redox state of the Q/QH2 cannot be altered by the overexpression of the cccNOQP operon in the BCI mutant.
본문요약 정보가 도움이 되었나요?

참고문헌 (36)

  1. Badrick, A. C., A. J. Hamilton, P. V. Bernhardt, C. F. Jones, U. Kappler, M. P. Jennings, and A. G. McEwan. 2007. PrrC, a Sco homologue from Rhodobacter sphaeroides, possesses thiol- disulfide oxidoreductase activity. FEBS Lett. 581, 4663-4667 

  2. Comolli, J.C., A. J. Carl, C. Hall, and T. Donohue. 2002. Transcriptional activation of the Rhodobacter sphaeroides cytochrome $c_{2}$ gene P2 promoter by the response regulator PrrA. J. Bacteriol. 184, 390-399 

  3. Cooley, J. W. and W. F. J. Vermaas. 2001. Succinate dehydrogenase and other respiratory pathways in thylakoid membranes of Synechocystis sp. strain PCC6803: capacity comparisons and physiological function. J. Bacteriol. 183, 4251-4258 

  4. Davis, J., T. J. Donohue, and S. Kaplan. 1988. Construction, characterization, and complementation of a Puf- mutant of Rhodobacter sphaeroides. J. Bacteriol. 170, 320-329 

  5. Dickinson, E. K., D. L. Adams, E. A. Schon, and D. M. Glerum. 2000. A human SCO2 mutation helps define the role of Sco1p in the cytochrome oxidase assembly pathway. J. Biol. Chem. 275, 26780-26785 

  6. Eraso, J. M. and S. Kaplan. 1994. prrA, a putative response regulator involved in oxygen regulation of photosynthesis gene expression in Rhodobacter sphaeroides. J. Bacteriol. 176, 32-43 

  7. Eraso, J. M. and S. Kaplan. 1995. Oxygen-insensitive synthesis of the photosynthetic membranes of Rhodobacter sphaeroides: a mutant histidine kinase. J. Bacteriol. 177, 2695-2706 

  8. Eraso, J. M. and S. Kaplan. 1996. Complex regulatory activities associated with the histidine kinase PrrB in expression of photosynthesis genes in Rhodobacter sphaeroides 2.4.1. J. Bacteriol. 178, 7037-7046 

  9. Eraso, J. M. and S. Kaplan. From redox flow to gene regulation: role of the PrrC protein of Rhodobacter sphaeroides 2.4.1. Biochemistry 39, 2052-2062 

  10. Eraso, J. M., J. H. Roh, X. Zeng, S. J. Callister, M. S. Lipton, and S. Kaplan. 2008. Role of the global transcriptional regulator PrrA in Rhodobacter sphaeroides 2.4.1: combined transcriptome and proteom analysis. J. Bacteriol. 190, 4831-4848 

  11. Garcia-Horsman, J. A., E. Berry, J. P. Shapleigh, J. O. Alben, and R. B. Gennis. 1994. A novel cytochrome c oxidase from Rhodobacter sphaeroides that lacks CuA. Biochemistry 33, 3113-3119 

  12. Gomelsky, M. and S. Kaplan. 1995. appA, a novel gene encoding a trans-acting factor involved in the regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J. Bacteriol. 177, 4609-4618 

  13. Gomelsky, M. and S. Kaplan. 1995. Genetic evidence that PpsR from Rhodobacter sphaeroides 2.4.1 functions as a repressor of puc and bchF expression. J. Bacteriol. 177, 1634-1637 

  14. Hosler, J. P., J. Fetter, M. M. Tecklenburg, M. Espe, C. Lerma, and S. Ferguson-Miller. 1992. Cytochrome $aa_{3}$ of Rhodobacter sphaeroides as a model for mitochondrial cytochrome c oxidase. Purification, kinetics, proton pumping, and spectral analysis. J. Biol. Chem. 267, 24264-24272 

  15. Jessee, J. 1986. New subcloning efficiency competent cells: >1× $10^{6} $ transformants/ug. Focus 8, 9 

  16. Keen, N. T., S. Tamaki, D. Kobayashi, and D. Trollinger. 1988. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70, 191-197 

  17. Kiley, P. J. and S. Kaplan. 1988. Molecular genetics of photosynthetic membrane biosynthesis in Rhodobacter sphaeroides. Microbiol. Rev. 52, 50-69 

  18. Kim, Y. J., I. J. Ko, J. M. Lee, H. Y. Kang, Y. M. Kim, S. Kaplan, and J. I. Oh. 2007. Dominant role of the $cbb_{3}$ oxidase in regulation of photosynthesis gene expression through the PrrBA system in Rhodobacter sphaeroides 2.4.1. J. Bacteriol. 189, 5617-5625 

  19. Kobach, M. E., R. W. Phillips, P. H. Elzer, R. M. Roop, and K. M. Peterson. 1994. pBBR1MCS: a broad-host range cloning vector. BioTechniques 16, 800-802 

  20. Mouncey, N. J., E. Gak., M. Chodhary, J. I. Oh, and S. Kaplan. 2000. Respiratory pathways of Rhodobacter sphaeroides 2.4.1: identification and characterization of genes encoding quinol oxidases. FEMS Microbiol. Lett. 192, 205-210 

  21. O'Gara, J. P. and S. Kaplan. 1997. Evidence for the role of redox carriers in photosynthesis gene expression and carotenoid biosynthesis in Rhodobacter sphaeroides 2.4.1. J. Bacteriol. 179, 1951-1961 

  22. Oh, J. I. and S. Kaplan. 1999. The $cbb_{3}$ terminal oxidase of Rhodobacter sphaeroides 2.4.1: structural and functional implications for the regulation of spectral complex formation. Biochemistry 38, 2688-2696 

  23. Oh, J. I., J. M. Eraso, and S. Kaplan. 2000. Interacting regulatory circuits involved in orderly control of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J. Bacteriol. 182, 3081-3087 

  24. Oh, J. I. and S. Kaplan. 2000. Redox signaling: globalization of gene expression. EMBO J. 19, 4237-4247 

  25. Oh, J. I. and S. Kaplan. 2001. Generalized approach to the regulation and integration of gene expression. Mol. Microbiol. 39, 1116-1123 

  26. Oh, J. I., I. J. Ko, and S. Kaplan. 2001. The default state of the membrane-localized histidine kinase PrrB of Rhodobacter sphaeroides 2.4.1 is in the kinase-positive mode. J. Bacteriol. 183, 6807-6814 

  27. Oh, J. I. and S. Kaplan. 2002. Oxygen adaptation: the role of the CcoQ subunit of the $cbb_{3}$ cytochrome c oxidase of Rhodobacter sphaeroides 2.4.1. J. Biol. Chem. 277, 16220-16228 

  28. Oh, J. I., I. J. Ko, and S. Kaplan. 2004. Reconstitution of the Rhodobacter sphaeroides $cbb_{3}$ -PrrBA signal transduction pathway in vitro. Biochemistry. 43, 7915-7923 

  29. Oh, J. I. 2006. Effect of mutations of five conserved histidine residues in the catalytic subunit of the $cbb_{3}$ cytochrome c oxidase in its function. J. Microbiol. 44, 284-292 

  30. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 

  31. Shapleigh, J. P., J. J. Hill, J. O., Alben, and R. B. Gennis. 1992. Spectroscopic and genetic evidence for two heme-Cu-containing oxidasesin Rhodobacter sphaeroides. J. Bacteriol. 174, 2338-2343 

  32. Simon, R., U. Priefer, and A. Puhler. 1983. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/ Technol. 1, 784-791 

  33. Swem, L. R., X. Gong, C. A. Yu, and C. E. Bauer. 2006. Identification of a ubiquinone binding site that affects autophosphorylation of the sensor kinase RegB. J. Biol. Chem. 281, 6768-6775 

  34. van Den Bergen, C. W. M., A. M. Wagner, K. Klab, and A. L. Moore. 1994. The relationship between electron flux and the redox poise of the quinone pool in plant mitochondria: interplay between quinol-oxidizing and quinone-reducing pathways. Eur. J. Biochem. 226, 1071-1078 

  35. van Neil, C. B. 1944. The culture, general physiology, morphology, and classification of the non-sulfur purple and brown bacteria. Bacterial Rev. 8, 1-118 

  36. Zeilstra-Ryalls, J. H. and S. Kaplan. 1998. Role of the fnrL gene in photosystem gene expression and photosynthetic growth of Rhodobacter sphaeroides 2.4.1. J. Bacteriol. 180, 1496-1503 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 보고서와 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트