$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Kinesin superfamily KIF1A와 결합하는 미세소관 불안정화 단백질 SCG10의 규명

SCG10, a Microtubule-Destabilizing Factor, Interacts Directly with Kinesin Superfamily KIF1A Protein in Brain

초록

미세소관은 세포골격단백질의 중요한 구성 단백질로 축삭돌기 내에서는 세포막 방향으로 정렬되어 있다. Kinesin superfamily (KIFs)는 세포 내에서 미세소관을 따라 세포 내 소포들을 운반하는 분자 자동차 (molecular motor) 단백질이다. 본 연구에서 우리는 효모 two-hybrid system을 사용하여 KIF1A의 coiled-coil 영역과 결합하는 단백질로 미세소관 불안정화 요소인 SCG10 단백질을 분리하였다. SCG10은 KIFs에서 KIF1A와만 특이적으로 결한 하며, KIF1A의 400에서 820아미노산 부위가 SCG10과의 결합에 필수적임을 효모 two-hybrid assay로 확인하였다. 또한 SCG10의 coiled-coil영역은 KIF1A와의 결합에 필수영역임을 확인하였으며 단백질간의 결합은 Glutathione S-transferase pull-down assay를 통하여 확인하였다. 생쥐의 뇌 파쇄액에 SCG10항체로 면역침강을 행하여 KIF1A를 확인한 결과KIF1A는 SCG10과 특이적으로 같이 침강하였다. 이러한 결과들은 KIF1A는 SCG10와 결합하여 SCG10이 포함된 소포를 미세소관을 따라 이동시킴을 시사한다.

Abstract

Microtubules, a major cytoskeleton, form parallel arrays in the axon and are oriented with their plus ends toward the cell periphery. Kinesin superfamily proteins (KIFs) are the molecular motors acting in the microtubule-based motilities of organelles in cells. Here, we used the yeast two-hybrid system to identify the protein that interacts with the coiled-coil domain of KIF1A and found a specific interaction with microtubule-destabilizing factor SCG10. SCG10 bound to the amino acid residues between 400 and 820 of KIF1A, but not to other KIFs in the yeast two-hybrid assay. The coiled-coil domain of SCG10 is essential for interaction with KIF1A. In addition, this specific interaction was also observed in the Glutathione S-transferase pull-down assay. An antibody to SCG10 specifically co-immunoprecipitated KIF1A associated with SCG10 from mouse brain extracts. These results suggest that KIF1A motor protein transports SCG10-containing vesicles along microtubules in neurons.

저자의 다른 논문

참고문헌 (52)

  1. Aizawa, H., Y. Sekine, R. Takemura, Z. Zhang, M. Nangaku, and N. Hirokawa. 1992. Kinesin family in murine central nervous system. J. Cell Biol. 119, 1287-1296 
  2. Almenar-Queralt, A. and L. S. Goldstein. 2001. Linkers, packages and pathways: new concepts in axonal transport. Curr. Opin. Neurobiol. 11, 550-557 
  3. Baas, P. W., J. S. Deitch, M. M. Black, and G. A. Banker. 1988. Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc. Natl. Acad. Sci. USA 85, 8335-8339 
  4. Burton, P. R. 1988. Dendrites of mitral cell neurons contain microtubules of opposite polarity. Brain Res. 473, 107-115 
  5. Cassimeris, L. 2002. The oncoprotein 18/stathmin family of microtubule destabilizers. Curr. Opin. Cell Biol. 14, 18-24 
  6. Dell, K. R. 2003. Dynactin polices two-way organelle traffic. J. Cell Biol. 160, 291-293 
  7. Dent, E. W. and F. B. Gertler. 2003. Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40, 209-227 
  8. Di Paolo, G., R. Lutjens, A. Osen-Sand, A. Sobel, S. Catsicas, and G. Grenningloh. 1997. Differential distribution of stathmin and SCG10 in developing neurons in culture. J. Neurosci. Res. 50, 1000-1009 
  9. Di Paolo, G., R. Lutjens, V. Pellier, S. A. Stimpson, M. H. Beuchat, S. Catsicas, and G. Grenningloh. 1997. Targeting of SCG10 to the area of the Golgi complex is mediated by its NH2-terminal region. J. Biol. Chem. 272, 5175-5182 
  10. Dorner, C., T. Ciossek, S. Muller, P. H. Moller, A. Ullrich, and R. Lammers. 1998. Characterization of KIF1C, a new kinesin-like protein involved in vesicle transport from the Golgi apparatus to the endoplasmic reticulum. J. Biol. Chem. 273, 20267-20275 
  11. Dorner, C., A. Ullrich, H. U. Haring, and R. Lammers. 1999. The kinesin-like motor protein KIF1C occurs in intact cells as a dimer and associates with proteins of the 14-3-3 family. J. Biol. Chem. 274, 33654-33660 
  12. Goldstein, L. S. and Z. Yang. 2000. Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. Annu. Rev. Neurosci. 23, 39-71 
  13. Goldstein, L. S. 2001. Kinesin molecular motors: transport pathways, receptors, and human disease. Proc. Natl. Acad. Sci. U S A 98, 6999-7003 
  14. Gordon-Weeks, P. R. 2004. Microtubules and growth cone function. J. Neurobiol. 58, 70-83 
  15. Grenningloh, G., S. Soehrman, P. Bondallaz, E. Ruchti, and H. Cadas. 2004. Role of the microtubule destabilizing proteins SCG10 and stathmin in neuronal growth. J. Neurobiol. 58, 60-69 
  16. Griffin, J. W. and D. F. Watson. 1988. Axonal transport in neurological disease. Ann. Neurol. 23, 3-13 
  17. Hall, D. H. and E. M. Hedgecock. 1991. Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell 65, 837-847 
  18. Heidemann, S. R., J. M. Landers, and M. A. Hamborg. 1981. Polarity orientation of axonal microtubules. J. Cell Biol. 91, 661-665 
  19. Hirokawa, N. 1998. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519-526 
  20. Hirokawa, N., and Y. Noda. 2008. Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiol. Rev. 88, 1089-1118 
  21. Hurd, D. D. and W. M. Saxton. 1996. Kinesin mutations cause motor neuron disease phenotypes by disrupting fast axonal transport in Drosophila. Genetics 144, 1075-1085 
  22. Kamal, A. and L. S. Goldstein. 2000. Connecting vesicle transport to the cytoskeleton. Curr. Opin. Cell Biol. 12, 503-508 
  23. Kanai, Y., Y. Okada, Y. Tanaka, A. Harada, S. Terada, and N. Hirokawa. 2000. KIF5C, A novel neuronal kinesin enriched in motor neurons. J. Neurosci. 20, 6374-6384 
  24. Karcher, R. L., S. W. Deacon, and V. I. Gelfand. 2002. Motor-cargo interactions: the key to transport specificity. Trends Cell Biol. 12, 21-27 
  25. Kim, S. J., C. H. Lee, H. Y. Park, S. S. Yea, W. H. Jang, S. K. Lee, Y. H. Park, O. S. Cha, I. S. Moon, and D. H. Seog. 2007. JSAP1 interacts with kinesin light chain 1 through conserved binding segments. Journal of Life Science 17, 889-895 
  26. Klopfenstein, D. R. and R. D. Vale. 2004. The lipid binding pleckstrin homology domain in UNC-104 kinesin is necessary for synaptic vesicle transport in Caenorhabditis elegans. Mol. Biol. Cell 15, 3729-3739 
  27. Lutjens, R., M. Igarashi, V. Pellier, H. Blasey, G. Di Paolo, E. Ruchti, C. Pfulg, J. K. Staple, S. Catsicas, and G. Grenningloh. 2000. Localization and targeting of SCG10 to the trans-Golgi apparatus and growth cone vesicles. Eur. J. Neurosci. 12, 2224-2234 
  28. Miki, H., M. Setou, K. Kaneshiro, and N. Hirokawa. 2001. All kinesin superfamily protein, KIF, genes in mouse and human. Proc. Natl. Acad. Sci. USA 98, 7004-7011 
  29. Mori, N. and H. Morii. 2002. SCG10-related neuronal growth-associated proteins in neural development, plasticity, degeneration, and aging. J. Neurosci. Res. 70, 264-273 
  30. Nangaku, M., R. Sato-Yoshitake, Y. Okada, Y. Noda, R. Takemura, H. Yamazaki, and N. Hirokawa. 1994. KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell 79, 1209-1220 
  31. Niwa, S., Y. Tanaka, and N. Hirokawa. 2008. KIF1Bbetaand KIF1A-mediated axonal transport of presynaptic regulator Rab3 occurs in a GTP-dependent manner through DENN/MADD. Nat. Cell Biol. 10, 1269-1279 
  32. Okada, Y., H. Yamazaki, Y. Sekine-Aizawa, and N. Hirokawa. 1995. The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 81, 769-780 
  33. Okazaki, T., B. N. Yoshida, K. B. Avraham, H. Wang, C. W. Wuenschell, N. A. Jenkins, N. G. Copeland, D. J. Anderson, and N. Mori. 1993. Molecular diversity of the SCG10/stathmin gene family in the mouse. Genomics 18, 360-373 
  34. Poulain, F. E. and A. Sobel. 2007. The 'SCG10-LIke Protein' SCLIP is a novel regulator of axonal branching in hippocampal neurons, unlike SCG10. Mol. Cell Neurosci. 34, 137-146 
  35. Reid, E., M. Kloos, A. Ashley-Koch, L. Hughes, S. Bevan, I. K. Svenson, F. L. Graham, P. C. Gaskell, A. Dearlove, M. A. Pericak-Vance, D. C. Rubinsztein, and D. A. Marchuk. 2002. A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). Am. J. Hum. Genet. 71, 1189-1194 
  36. Riederer, B. M., V. Pellier, B. Antonsson, G. Di Paolo, S. A. Stimpson, R. Lutjens, S. Catsicas, and G. Grenningloh. 1997. Regulation of microtubule dynamics by the neuronal growth-associated protein SCG10. Proc. Natl. Acad. Sci. USA 94, 741-745 
  37. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual. 3rd Edition. Cold Spring Habor Laboratory, Cold Spring Habor, New York 
  38. Schubart, U. K., J. Yu, J. A. Amat, Z. Wang, M. K. Hoffmann, and W. Edelmann. 1996. Normal development of mice lacking metablastin (P19), a phosphoprotein implicated in cell cycle regulation. J. Biol. Chem. 271, 14062-14066 
  39. Seog, D. H. and I. S. Moon. 2008. $\gamma$-Aminobutyric acid transporter 2 binds to the PDZ domain of mammalian Lin-7. Journal of Life Science 18, 940-946 
  40. Seog, D. H., D. H. Lee, and S. K. Lee. 2004. Molecular motor proteins of the kinesin superfamily proteins (KIFs): structure, cargo and disease. J. Korean Medical Science 19, 1-7 
  41. Setou, M., T. Nakagawa, D. H. Seog and N. Hirokawa. 2000. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288, 1796-1802 
  42. Stein, R., N. Mori, K. Matthews, L. C. Lo, and D. J. Anderson. 1988. The NGF-inducible SCG10 mRNA encodes a novel membrane-bound protein present in growth cones and abundant in developing neurons. Neuron 1, 463-476 
  43. Stein, R., S. Orit, and D. J. Anderson. 1988. The induction of a neural-specific gene, SCG10, by nerve growth factor in PC12 cells is transcriptional, protein synthesis dependent, and glucocorticoid inhibitable. Dev. Biol. 127, 316-325 
  44. Suh, L. H., S. F. Oster, S. S. Soehrman, G. Grenningloh, and D. W. Sretavan. 2004. L1/Laminin modulation of growth cone response to EphB triggers growth pauses and regulates the microtubule destabilizing protein SCG10. J. Neurosci. 24, 1976-1986 
  45. Tararuk, T., N. Ostman, W. Li, B. Bjorkblom, A. Padzik, J. Zdrojewska, V. Hongisto, T. Herdegen, W. Konopka, M. J. Courtney, and E. T. Coffey. 2006. JNK1 phosphorylation of SCG10 determines microtubule dynamics and axodendritic length. J. Cell Biol. 173, 265-277 
  46. Vale, R. D. 2003. The molecular motor toolbox for intracellular transport. Cell 112, 467-480 
  47. Verhey, K. J., D. Meyer, R. Deehan, J. Blenis, B. J. Schnapp, T. A. Rapoport, and B. Margolis. 2001. Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J. Cell Biol. 152, 959-970 
  48. Warita, H., Y. Itoyama, and K. Abe. 1999. Selective impairment of fast anterograde axonal transport in the peripheral nerves of asymptomatic transgenic mice with a G93A mutant SOD1 gene. Brain Res. 819, 120-131 
  49. Williamson, T. L. and D. W. Cleveland. 1999. Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nat. Neurosci. 2, 50-56 
  50. Yang, J. T., R. A. Laymon, and L. S. Goldstein. 1989. A three-domain structure of kinesin heavy chain revealed by DNA sequence and microtubule binding analyses. Cell 56, 879-889 
  51. Zakharenko, S. S., J. Joseph, S. Vronskaya, D. Yin, U. K. Schubart, E. R. Kandel, and V. Y. Bolshakov. 2005. Stathmin, a gene enriched in the amygdala, controls both learned and innate fear. Cell 123, 697-709 
  52. Zhao, C., J. Takita, Y. Tanaka, M. Setou, T. Nakagawa, S. Takeda, H. W. Yang, S. Terada, T. Nakata, Y. Takei, M. Saito, S. Tsuji, Y. Hayashi, and N. Hirokawa. 2001. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell 105, 587-597 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일