$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

줄 가열 변화에 따른 박막 트랜지스터 내 포논 열 흐름에 대한 수치적 연구

Effect of Joule Heating Variation on Phonon Heat Flow in Thin Film Transistor

Abstract

The anisotropic phonon conductions with varying Joule heating rate of the silicon film in Silicon-on-Insulator devices are examined using the electron-phonon interaction model. It is found that the phonon heat transfer rate at each boundary of Si-layer has a strong dependence on the heating power rate. And the phonon flow decreases when the temperature gradient has a sharp change within extremely short length scales such as phonon mean free path. Thus the heat generated in the hot spot region is removed primarily by heat conduction through Si-layer at the higher Joule heating level and the phonon nonlocality is mainly attributed to lower group velocity phonons as remarkably dissimilar to the case of electrons in laser heated plasmas. To validate these observations the modified phonon nonlocal model considering complete phonon dispersion relations is introduced as a correct form of the conventional theory. We also reveal that the relation between the phonon heat deposition time from the hot spot region and the relaxation time in Si-layer can be used to estimate the intrinsic thermal resistance in the parallel heat flow direction as Joule heating level varies.

참고문헌 (19)

  1. Ke, W., Han, X., Xu, B., Liu, X., Wang, X., Zhang, T., Han, R., and Zhang, S., 2006, 'Source/drain series resistances of nanoscale ultra-thin-body SOI MOSFETs with undoped or very-low-doped channel regions,' Semiconductor Science and Technology, Vol. 21, No. 10, pp. 1416-1421 
  2. Sverdrup, P. G., Ju, Y. S., and Goodson, K. E., 2001, 'Sub-Continuum Simulations of Heat Conduction in Silicon-on-Insulator Transistors,' ASME Journal of Heat Transfer, Vol. 123, No. 1, pp. 130-137 
  3. Narumanchi, S. V. J., Murthy, J. Y., and Amon, C. H., 2004, 'Submicron Heat Transfer Model in Silicon Accounting for Phonon Dispersion and Polarization,' ASME Journal of Heat Transfer, Vol. 126, No. 6, pp. 946-955 
  4. Narumanchi, S. V. J., Murthy, J. Y., and Amon, C. H., 2005, 'Comparison of Different Phonon Transport Models for Predicting Heat Conduction in Silicon-oninsulator Transistors,' ASME Journal of Heat Transfer, Vol. 127, No. 7, pp. 713-723 
  5. Narumanchi, S. V. J., Murthy, J. Y., and Amon, C. H., 2006, 'Boltzmann transport equation-based thermal modeling approaches for hotspots in microelectronics,' Heat and Mass Transfer, Vol. 42, No.6, pp. 478-491 
  6. Sinha, S., Pop, E., Dutton, R. W., and Goodson, K. E., 2006, 'Non-Equilibrium Phonon Distributions in Sub-100 nm Silicon Transistors,' ASME Journal of Heat Transfer, Vol. 128, No. 7, pp. 638-647 
  7. Jin, J. S. and Lee, J. S., 2009, 'Electron-Phonon Interaction Model and Its Application to Thermal Transport Simulation during ESD Event in NMOS Transistor,' ASME Journal of Heat Transfer, Vol. 131, No. 9, Paper Number 092401 
  8. Liu, W. and Asheghi, M., 2004, 'Phonon- Boundary Scattering in Ultrathin Single-Crystal Silicon Layers,' Applied Physics Letters, Vol. 84, No. 19, pp. 3819-3821 
  9. Tien, C. L., Majumdar, A., Gerner, F. M., 1998, MICROSCALE ENERGY TRANSPORT, Taylor & Francis, Washington D. C., pp 3-94 
  10. Bell, A. R., Evans, R. G., and Nicholas, D. J., 1981, 'Electron Energy Transport in Steep Temperature Gradients in Laser-Produced Plasmas,' Physical Review Letters, Vol. 46, No. 4, pp. 243-246 
  11. Larson, B. C., Tischler, J. Z., and Mills, D. M., 1986, 'Nanosecond resolution time-resolved x-ray study of silicon during pulsed-laser irradiation,' Journal of Materials Research, Vol. 1, No. 1, pp. 144-154 
  12. Glassbrenner, C. J. and Slack, G. A., 1964, 'Thermal Conductivity of Silicon and Germanium from $3^{\circ}K$ to the Melting Point,' Physical Review, Vol. 134, No. 4A, pp. A1058-A1069 
  13. Ju, Y. S., 2005, 'Phonon heat transport in silicon nanostructures,' Applied Physics Letters, Vol. 87, No. 15, Paper Number 153106 
  14. Pop, E., Dutton, R. W., and Goodson, K. E., 2005, 'Monte Carlo simulation of Joule heating in bulk and strained silicon,' Applied Physics Letters, Vol. 86, No. 8, Paper Number 082101 
  15. Goodson, K. E., Flik, M. I., Su, L. T., and Antoniadis, D. A., 1995, 'Prediction and Measurement of Temperature Fields in Silicon-on-Insulator Electronic Circuits,' ASME Journal of Heat Transfer, Vol. 117, No. 3, pp. 574-581 
  16. Jin, J. S. and Lee, J. S., 2007, 'Electron-Phonon Interaction Model and Prediction of Thermal Energy Transport in SOI Transistor,' Journal of Nanoscience and Nanotechnology, Vol. 7, No. 11, pp. 4094-4100 
  17. Mahan, G. D. and Claro, F., 1988, 'Nonlocal theory of thermal conductivity,' Physical Review B, Vol. 38, No. 3, pp. 1963-1969 
  18. Bychenkov, V. Y., Rozmus, W., and Tikhonchuk, V. T., 1995, 'Nonlocal Electron Transport in a Plasma,' Physical Review Letters, Vol. 75, No. 24, pp. 4405-4408 
  19. Pop, E., Dutton, R. W., and Goodson, K. E., 2004, 'Analytic band Monte Carlo model for electron transport in Si including acoustic and optical phonon dispersion,' Journal of Applied Physics, Vol. 96, No. 9, pp. 4998-5005 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일