$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

초록

히스톤 디아세틸라이제 저해제(HDACI)는 최근에 새로운 미래형 항암제로 주목을 받고 있으며 다른 항암요법 및 치료제와의 병용치료에도 효과적으로 적용될 수 있을 것으로 기대하고 있다. HDACI은 다양한 조직기원의 암세포에서 증식억제 및 세포사멸 유도능이 시험되어 왔으나 비소세포폐암 세포에서 그 작용 및 기전이 명확히 조사된 바가 없다. 본 연구는 HDACI 중의 하나인 sodium butyrate (SB)를 비소세포폐암 세포주인 H460에 처리하여 세포생존율, 세포주기 분석, 세포사멸도를 평가하고, 이와 관련하여 세포사멸 관련 단백질, p53, ERK의 변화를 조사하고자 하였다. 3가지 다른 농도(2.5, 7.5, 20 mM)의 SB에 H460 세포가 48시간 노출되었을 때, 세포 생존율은 농도의존적으로 감소되었으나 7.5 mM 이상의 농도에서 대조군에 비해 유의한 생존을 감소를 보였고, 20 mM에서 생존을 50% 전후를 나타냈다. SB노출은 H460 세포의 사멸을 유발하였는데, 세포사의 유형은 아포토시스와 괴사가 동시에 발생함이 Annexin-V 분석으로 확인되었다. H460 세포에서 SB에 의해 유발되는 뚜렷한 세포주기의 변화양상은 G2/M기정지였으며, 이러한 세포주기의 지연현상으로 세포사멸이 초래되는 것으로 생각된다. SB처리는 아포토시스 발생관련 효소인 caspase-3과 caspase-7의 활성화를 유발하였으며, 이에 의한 PARP 단백 질의 분절화도 관찰되었다. 동시에, 항세포사별 단백질인 XIAP의 단백질 함량은 감소함을 보였다. SB 노출에 의한 세포주기의 G2/M기의 정지현상과 관련하여는 p53 단백질의 증가가 주목할 만한 하였다. SB의 H460세포에의 처리는 일반 ERK단백질의 함량 변화를 유도하지 않았으나, 인산화형의 ERK는 SB처리농도에 의존적으로 그 단백질 함량이 감소하였다. 이는 ERK가 비소세포폐암 세포인 H460에서 세포생존 및 유지와 관련된 단백질의 인산화에 계속적으로 관여하고 있다는 사실을 암시한다. 즉, SB의 처리는 ERK의 인산화를 유의하게 억제하는 기전과 관련이 있을 가능성이 높다고 추측된다. 향후 SB의 노출에 의한 PERK 감소 기전에 대한 연구가 추가적으로 진행되면 SB의 더욱 효율적인 암세포 사멸 유도 전략수립에 도움을 줄 수 있을 것이라 예상된다.

Abstract

Histone deacetylase inhibitor (HDACI) is a new promising candidate as an antineoplastic agent for the treatment of solid and hematologic malignancies. In order to evaluate cell death and to elucidate the related mechanism(s) in NSCLC cells after HDACI, sodium butyrate (SB), a representative HDACI, was used to treat H460 cells for 48 hrs. SB exposure resulted in a significant reduction of cell viability at concentrations below 7.5 mM, and about 50% of cell death occurred at 20 mM. The types of cell death induced by SB were both apoptosis and necrosis, evaluated by Annexin-V staining combined with propidium iodide. SB treatment significantly evoked G2/M cell cycle arrest and subsequently induced cell death with caspase-dependent manner. While ERK protein content was not altered after SB, phosphorylated forms of ERK were markedly reduced. Taken together, SB is significantly able to induce cell death in NSCLC cell line H460, and it is suggested that the reduction of ERK phosphorylation might be closely involved in the cancer cell death mechanism initiated by HDACI.

참고문헌 (38)

  1. Adams, J. M. and S. Cory. 2002. Apoptosomes: engines for caspase activation. Curro Opin. Cell BioI. 14, 715-720 
  2. Belmokhtar, C. A, J. Hillion, C. Dudognon, S. Fiorentino, M. Flexor, M. Lanotte, and E. Segal-Bendirdjian. 2003. Apoptosome-independent pathway for apoptosis. Biochemical analysis of AP AF-l defects and biological outcomes. J. BioI. Chem. 278, 29571-29580 
  3. Bidon, N., F. Brichory, D. Thomas, A Cavalier, S. Caulet-Maugendre, P. Bourguet, and L. Dazord. 2001. Sodium butyrate induces growth inhibition and modulates galectin-8 expression in human lung carcinoma cells. Anticancer Res. 21, 1049-1055 
  4. Chopin, V., R A Toillo, N. Jouy, and X. Le Bourhis. 2002. Sodium butyrate induces P53-independent, Fas-mediated apoptosis in MCF-7 human breast cancer cells. Br. J. Pharmacal. 135, 79-86 
  5. Cobb, M. H. 1999. MAP kinase pathways. Prog. Biophys. Mol. BioI. 71, 479-500 
  6. Cross, T. G, D, Scheel-Toellner, N. V. Henriquez, E. Deacon, M. Salmon, and J. M. Lord. 2000. Serine/threonine protein kinases and apoptosis. Exp. Cell Res. 256, 34-41 
  7. DanieL J. C., and W. R 2003. Smythe. Gene therapy of lung cancer. Semin. Surg. Oneol. 21, 196-204 
  8. Davis, R J. 2000. Signal transduction by the JNK group of MAP kinases. Cell 103, 239-252 
  9. Edwards, A, J. Li, P. Atadja, K. Bhalla, and E. B. Haura. 2007. Effect of the histone deacetylase inhibitor LBH589 against epidermal growth factor receptor-dependent human lung cancer cells. Mol. Cancer Ther. 6, 2515-2524 
  10. Greenberg, V. L., J. M. Williams, J. P. Cogswell, M. Mendenhall, and S. G Zimmer. 2001. Histone deacetylase inhibitors promote apoptosis and differential cell cycle arrest in anaplastic thyroid cancer cells. Thyroid 11, 315-325 
  11. Hansen, T. M. and P. Nagley. 2003. AIF: a multifunctional cog in the life and death machine. Sci. STKE. 29, PE31 
  12. Hernandez, A, R Thomas, F. Smith, J. Sandberg, S. Kim, D. H. Chung, and B. M. Evers. 2001. Butyrate sensitizes human colon cancer cells to TRAIL-mediated apoptosis. Surgery 130, 265-272 
  13. Komatsu, N., N. Kawamata, S. Takeuchi, D. Yin, W. Chien, C. W. Miller, and H. P. Koeffler. 2006. SAHA, a HDAC inhibitor, has profound anti-growth activity against non-small cell lung cancer cells. Oneol. Rep. 15, 187-191 
  14. Kosmidis, P. A and C. Manegold. 2003. Advanced NSCLC: New cytostatic agents. Lung Cancer 41 (Suppl), S123-132 
  15. Lansiaux, A, M. Facompre, N. Wattez, M. P. Hildebrand, C. BaL D. Demarquay, O. Lavergne, D. C. Bigg, and C. Bailly. 2001. Apoptosis induced by the homocamptothecin anticancer drug BN80915 in HL-60 cells. Mol. Pharmacol. 60, 450-461 
  16. Lee, E. M., S. Shin, H. J. Cha, Y. Yoon, S. Bae, J. H. Jung, S. M. Lee, S. J. Lee, I. C. Park, Y. W. Jin, and S. An. 2009. Suberoylanilide hydroxamic acid (SAHA) changes microRNA expression profiles in A549 human non-small cell lung cancer cells. Int. J. Mol. Med. 24, 45-50 
  17. Mai, A, S. Massa, D. Rotili, I. Cerbara, S. Valente, R Pezzi, S. Simeon, and R Ragno. 2005. Histone deacetylation in epigenetics: an attractive target for anticancer therapy. Med. Res. Rev. 25, 261-309 
  18. Manegold, C. 2001. Chemotherapy for advanced non-small cell lung cancer: standards. Lung Cancer 34 (Suppl), S165-170 
  19. Marks, P. A, T. M. Richon, T. Miller, and W. K. Kelly. 2004. Histone deacetylase inhibitors. Adv. Cancer Res. 91, 137-168 
  20. Marks, P. A, T. Miller, and V. M. Richon. 2004. Histone deacetylases. Curro Opin. Pharmacol. 3, 344-351 
  21. Marks, P. A, V. M. Richon, and R A Rifkind. 2000. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J. Natl. Cancer Inst. 92,1210-1216 
  22. Muhlethaler-Mottet, A, R Meier, M. Flahaut, K. B. Bourloud, K. Nardou, J. M. Joseph, and N. Gross. 2008. Complex molecular mechanisms cooperate to mediate histone de acetylase inhibitors anti-tumour activity in neuroblastoma cells. Mol. Cancer 7, 55 
  23. Pearson, G, F. Robinson, T. Beers Gibson, B. E. Xu, M. Karandikar, K. Berman, and M. H. Cobb. 2001. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocrinol. Rev. 22, 153-183 
  24. Rahmani, M., E. Reese, Y. Dai, C. Bauer, S. G Payne, P. Dent, S. SpiegeL and S. Grant. 2005. Coadministration of histone deacetylase inhibitors and perifosine synergistically induces apoptosis in human leukemia cells through Akt and ERKl/2 inactivation and the generation of ceramide and reactive oxygen species. Cancer Res. 65, 2422-2432 
  25. Reddy, K. B., S. M. Nabha, and N. Atanaskova. 2003. Role of MAP kinase in tumor progression and invasion. Cancer Metastasis Rev. 22, 395-403 
  26. Rosato, R R, S. C. Maggio, J. A Almenara, S. G Payne, P. Atadja, S. SpiegeL P. Dent, and S. Grant. 2006. The histone deacetylase inhibitor LAQ824 induces human leukemia cell death through a process involving XIAP down-regulation, oxidative injury, and the acid sphingomyelinase-dependent generation of ceramide. Mol. Pharmacol. 69, 216-225 
  27. Sahara, S., M. Aoto, Y. Eguchi, N. Imamoto, Y. Yoneda, and Y. Tsujimoto. 1999. Acinus is a caspase-3-activated protein required for apoptotic chromatin condensation. Nature 401, 168-173 
  28. Sharma, K R X. Wang, L. Y. Zhang, D. L. Yin, X. Y. Luo, J. C. Solomon, R F. Jiang, K. Markos, W. Davidson, D. W. Scott, and Y. F. Shi. 2000. Death the Fas way: regulation and pathophysiology of CD95 and its ligand. Pharmacal. Ther. 88, 333-347 
  29. Shivapurkar, N., J. Reddy, P. M. Chaudhary, and A F. Gazdar. 2003. Apoptosis and lung cancer. J. Cell Biochem. 88, 885-898 
  30. Terao, Y., J. Nishida, S. Horiuchi, F. Rong, Y. Ueoka, T. Matsuda, H. Kato, Y. Furugen, K. Yoshida, K. Kato, and N. Wake. Sodium butyrate induces growth arrest and senescence-like phenotypes in gynecologic cancer cells. Int. J. Cancer 94, 257-267 
  31. Wada, T. and J. M. Penninger. 2004. Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23, 2838-2849 
  32. Widlak, P. 2000. The DFF40/ CAD endonuclease and its role in apoptosis. Acta Biochim. Pol. 47, 1037-1044 
  33. Xia, Z., M. Dickens, J. Raingeaud, R. J. Davis, and M. E. Greenberg. 1995. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270, 1326-1331 
  34. Yoon, H. S., S. C Moon, N. D. Kim, B. S. Park M. H. Jeong, and Y. H. Yoo. 2000. Genistein induces apoptosis of RPE-J cells by opening mitochondrial PTP. Biochem. Biophys. Res. Commun. 276, 151-156 
  35. Zangemeister-Wittke, U. and R. A. Stahel. 1999. Novel approaches to the treatment of small-celliung cancer. Cell Mol. Life Sci. 55, 1585-1598 
  36. Zhang, J. H. and M. Xu. 2000. DNA fragmentation in apoptosis. Cell Res. 10, 5-11 
  37. Zhang, X. D., S. K. Gillespie, J. M. Borrow, and P. Hersey. 2004. The histone deacetylase inhibitor suberic bishydroxamate regulates the expression of multiple apoptotic mediators and induces mitochondria-dependent apoptosis of melanoma cells. Mol. Cancer Ther. 3, 425-435 
  38. Zimmermann, K. C, C Bonzon, and D. R. Green. 2001. The machinery of programmed cell death. Pharmacol. Ther. 92, 57-70 

이 논문을 인용한 문헌 (1)

  1. Jin, Ji Young ; Cho, Kwang Keun ; Choi, In Soon 2013. "Effects of Butyrate on Colorectal Cancer" 생명과학회지 = Journal of life science, 23(1): 143~156 

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일