$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Phaleria macrocarpa Suppress Nephropathy by Increasing Renal Antioxidant Enzyme Activity in Alloxan-Induced Diabetic Rats

Natural product sciences v.15 no.3 , 2009년, pp.167 - 172  
Abstract

The protective effects of Phaleria macrocarpa (PM) against oxidative stress in diabetic rats were investigated. Diabetes was induced in male Sprague Dawley rats using alloxan (150 mg/kg i.p). After the administration of PM fractions for two weeks the diabetic symptoms, nephropathy and renal antioxidant enzymes were evaluated. The results showed that the oral PM treatments reduced blood glucose levels in diabetic rats. The PM fractions decreased kidney hypertrophy and diminished blood urea nitrogen (BUN) in diabetic rats. Malondialdehyde (MDA), a lipid peroxidation marker, was increased in diabetic animals, but was suppressed by the PM treatments. In addition, the superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, and glutathione (GSH) level in the alloxan-induced diabetic rats were significantly decreased compared with those in the normal rats, but were restored by PM treatments. The PM fractions also suppressed the level of MDA in the kidney. In conclusion, the anti hyperglycemic and anti-nephropathy of P. macrocarpa may be correlated to the increased renal antioxidant enzyme activity in the kidney.

참고문헌 (34)

  1. Baynes, J.W. and Thorpe, S.R., Role of oxidative stress in diabetes vascular complications: a new perspective of an old paradigm. Diabetes, 48, 1-9 (1999) 
  2. Marklund S. and Marklund, G., Involvement of the superoxide anion radical in the autooxidation of pyrogallol & convenient assay for superoxide dismutase. Eur. J. Biochem., 47, 469-474 (1974) 
  3. Ohkawa, H., Ohishi, N., and Yaki, K., Assay for lipid peroxide in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 95, 351-358 (1979) 
  4. Sugiwati, S., Kardono, L.B.S., and Bintang, M., Alpha-glucosidase inhibitory activity and hypoglycemic effect of Phaleria macrocarpa fruit pericarp extracts by oral administration to rats. J. Applied Sci., 6, 2312-2316 (2006) 
  5. Triastuti, A., Tito, F., and Wibowo, A., Antiangiogenic effect of the ethanolic extract from Phaleria macrocarpa Boerl. fruit on chick embryo chorio allantoic membrane (CAM) induced by BFGF, National Symposium in Medicinal Plants of Indonesia, Solo-Indonesia (2006) 
  6. Vinik, A.I. and Vinik, E., Prevention of the complications of diabetes. Am. J. Manag. Care., 9, 63-80 (2003) 
  7. West, I.C., Radicals and oxidative stress in diabetes. Diabet Med., 17, 171-180 (2000) 
  8. Yamamoto, H., Uchigata, Y., and Okamoto, H., Streptozotocin and alloxan induce DNA strand breaks and poly(ADP-ribose) synthetase in pancreatic islets. Nature, 294, 284-286 (1981) 
  9. Zhang, Y.B., Xu, X.J., and Liu, H.M., Chemical constituents from Mahkoda Dewa. J. Asian Nat. Prod. Res., 8, 119-123 (2006) 
  10. Faried, A., Kurnia, D., Faried, L.S., Usman, N., Miyazaki, T., Kato, H., and Kuwano, H., Anticancer effects of gallic acid isolated from Indonesia herbal medicine, Phaleria macrocarpa (Scheff.) Boerl, on human cancer cell lines. Int. J. Oncol., 30, 605-613 (2007) 
  11. Triastuti, A, Bachri, M.S., and Choi, J.W., Protective effect of butanol fraction of Phaleria macrocarpa on oxidative stress associated with atreptozotocin induced diabetic mice. International Symposium, Pharmaceutical Society of Korea. PD2-5 (2008) 
  12. Bansal, R., Ahmad, N., and Kidwai, J.R., Alloxan-glucose interaction: Effect on incorporation of C-leucine into pancreatic islets of rat. Acta Diabetologica Latina, 17, 135-143 (1980) 
  13. Bohlender, H.M., Franke, S., Stein, G., and Wof, G., Advanced glycation end products and the kidney. Am. J. Physiol. Renal. Physiol. 289, F645-F659 (2005) 
  14. Wells, B.G., Dipiro, J.T., Schwinghammer, T.L., and Hamilton, C.W., Pharmacotherapy Handbook, McGraw-Hill, pp. 170-181 (2003) 
  15. Paglia, E.D. and Valentine, W.N., Studies on the quantitative and qualitative charactrization of erythrocytes glutathione peroxide. J. Lab. Clin. Med,. 70, 158-169 (1967) 
  16. Robertson, R.P., Harmon, J., Tran, P.O., Tanaka, Y., and Takahashi, H., Glucose toxicity in β-cells: type 2 diabetes, good radicals gone bad,and the glutathione connection. Diabetes, 52, 581-587 (2003) 
  17. Wild, S., Roglic, G., Green, S., Sicree, R., and King, H., Global prevalence of diabetes, estimates for the year 2000 and projections for 2030, Diabetes Care, 27, 1047-1053 (2004) 
  18. Gill, P.S. and Wilcox, C.S., NADPH oxidases in the kidney. Antioxid. Redox. Signal., 8, 1597-1607 (2006) 
  19. Mahboob, M., Rahman, M.F., and Grover, P., Serum lipid peroxidation and antioxidant enzyme levels in male and female diabetic patients. Singapore Med. J., 46, 322-324 (2005) 
  20. Oshimi, S., Zaima, K., Matsuno, Y., Hirasawa, Y., Iizuka, T., Studiawan, H., Indrayanto, G., Zaini, N.C., and Morita, H., Studies onthe constituents from the fruits of Phaleria macrocarpa. Nat. Med. (Tokyo). 62, 207-210 (2008) 
  21. Saufi, A., von Heimendahl, C.B., Alfermann, A.W., and Fuss, E., Stereochemistry of lignans in Phaleria macrocarpa (Scheff.) Boerl. Z. Naturforsch., 63, 13-16 (2008) 
  22. Turko I.V., Marcondes, S., and Murad, F., Diabetes-associated nitration of tyrosine and activation of succinyl-CoA:3-oxoacid CoA transferase. Am. J. Physiol. Heart. Circ. Physiol., 281, 2289-2294 (2001) 
  23. Evans, J.L., Goldfine, I.D., Maddux, B.A., and Grodsky, G.M., Oxidative stress and stress-activated signaling pathyways: a unifying hypothesis of type 2 diabetes. Endocr. Rec., 23, 599-622 (2002) 
  24. Bryla, J., Kiersztan, A., and Jagielski, A.K., Promising novel approaches to diabetes mellitus therapy: pharmacological, molecular and cellular insights, Eur. Citizen's. Qual. Life., 1, 137-161 (2003) 
  25. Harmanto, N., Conquering Disease in Unison with Mahkota Dewa, Ir. Harmanto (Ed.), p.14 PT Mahkota Dewa Indonesia, North Jakarta 2003 
  26. Winarto, W.P., Mahkota Dewa: Budidaya dan pemanfaatan Untuk Obat. Penebar Swadaya, Indonesia (2003) 
  27. Mitchell, J.R., Jollow, D.W., Potter, W.Z., Gillette, J.R., and Brodie, B.B., Acetaminophen-induced hepatic necrosis IV. Protective role of glutathione. J. Pharmacol. Exp. Ther., 187, 211-217 (1973) 
  28. Aebi, H., Catalase. In "Methods of enzymatic analysis" Vergmeyer, M.U., Academic Press, New York., 2, 673 (1974) 
  29. Ellman, G.L., Tissue sulfhydryl group. Arc. Biochem. Biophys. 237, 1589-95 (1959) 
  30. Giardino, I., Edelstein, D., and Brownlee, M., BCL-2 expression or antioxidants prevent hyperglycemia-induced formation of intracellular advanced glycation endproducts in bovine endothelial cells. J. Clin. Invest., 97, 1422-1428 (1996) 
  31. Lowry, O., H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with folin phenol reagent. J. Biol. Chem., 193, 265-275 (1951) 
  32. Akkus, I., Kalak, S., Vural, H., Caglayan O., Menekse, E., and Can G., Leukocyte lipid peroxidation, superoxide dismutase, glutathione peroxidase and serum and leukocyte vitamin C levels of patients with type II diabetes mellitus. Clin. Chim. Acta., 244, 221-227 (1996) 
  33. Brownlee, M., Biochemistry and molecular cell biology of diabetic complications, Nature, 414, 813-820 (2001) 
  34. Stevens, M.J., Redox-based mechanisms in diabetes. Antioxid. Redox. Signal., 7, 1483-1485 (2005) 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일