$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

염색체 Microarray 검사의 임상적 적용
Clinical Applications of Chromosomal Microarray Analysis 원문보기

Journal of genetic medicine, v.7 no.2, 2010년, pp.111 - 118  

서을주 (울산의대 서울아산병원 진단검사의학과)

초록
AI-Helper 아이콘AI-Helper

염색체 microarray 검사는 유전체 전체를 한번에 검색하여 초현미경적인 염색체 이상을 매우 정밀하고 정확하게 검출할 수 있다. 외국에서는 현재 자주 활용되는 임상 진단 검사로 자리잡았고, 염색체 검사 또는 표적 부위를 검출하는 FISH 검사나 PCR 기반의 분자유전학적 방법을 대체하고 있다. 최근 발표된 consensus 들은 염색체 microarray 검사를 비특이적인 다발성 기형, 발달지연 또는 정신지체, 자폐증상질환의 환자에서는 염색체 검사보다 먼저 시행할 수 있는 검사로 제안하였다. 염색체 microarray 검사는 핵형 분석에서 검출된 염색체 불균형을 검증하기 위해 염색체 검사에 보조적으로 활용할 수 있고, 염색체 이상에 대한 보다 정확하고 종합적인 분석이 가능하다. 그러나 염색체 microarray 검사는 균형재배열의 염색체 이상과 low-level 모자이시즘을 검출하기 어렵고, 임상적 중요성이 불명확한 CNV에 대한 해석과 검사비용이 고가라는 한계점이 있다. 이러한 이유로 인해 현재로서는 염색체 microarray 검사가 산전 진단 목적으로는 고식적인 염색체 검사를 대신할 수는 없다는 의견이다. 임상검사실에서 염색체 microarray 검사 시행 시, 유전학적 및 세포유전학적 지식과 경험이 결과 분석과 해석 과정에서 요구되며, 적절한 검증 과정 단계와 유전상담이 동반되어야 한다.

Abstract AI-Helper 아이콘AI-Helper

Chromosomal microarray analysis (CMA) enables the genome-wide detection of submicroscopic chromosomal imbalances with greater precision and accuracy. In most other countries, CMA is now a commonly used clinical diagnostic test, replacing conventional cytogenetics or targeted detection such as FISH o...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

가설 설정

  • 에서 제시한 염색체 microarray 검사의 적용 범위는 거의 비슷하다. 진단 검사법으로서 염색체 microarray 검사를 가장 먼저 시행할 수 있는 적응증으로는 1) 비특이적인 다발성 기형, 2) 비증후군성 발달지연 또는 정신지체, 3) 자폐증상질환이 있다. 성장 지체과 언어발달지연의 경우 염색체 microarray 검사를 추가로 시행해 볼 수 있다.
  • The karyotype was initially designated 46,XX,del(3)(q29). (B) Chromosomal microarray profile of chromosome 3. The X-axis represents the probe index on chromosome 3, and the Y-axis represents the signal log2 ratio of the probe. The 3q29 region showed a 4.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
미세결손 증후군이란 무엇인가? 500-600 band 해상도의 염색체 검사로는 5 Mb 미만의 염색체 이상을 검출하기 어렵기 때문에 5 Mb 미만의 염색체 결손을 미세결손이라고 한다. 특징적인 표현형을 나타내면서 그 원인이 특정 유전체부위의 미세결손인 질환을 미세결손 증후군이라고 하며4), 미세결손 증후군을 진단하기 위해서 원인 유전체 부위를 표적한 형광제자리부합법 (fluorescence in situ hybridization, FISH)이나 PCR 기반의 유전학적 검사를 시행한다. 이러한 표적 검사법은 검출하고자 하는 유전체 부위에 대한 결과만을 알 수 있다3, 5).
인간 유전체의 크기는 어느정도인가? 인간 유전체의 크기가 3,100 Mb (http://www.ncbi.
분열중기 comparative genomic hybridization 기법의 단점은 무엇인가? Test 세포와 re-ference 세포로부터 추출한 DNA를 각각 다른 두 가지 형광으로 표지하여 정상 분열중기 염색체에 동시에 부합한 후에 염색체 지도상에 나타나는 형광 강도비로 test 게놈과 reference 게놈의 염색체 양을 상대적으로 분석함으로써 test 세포에서 염색체 특정 부위의 양적 변이를 파악할 수 있다. 그러나 분열중기 CGH는 염색대 수준의 해상도를 가지기 때문에 5 Mb 이하의 염색체 양적 변이를 검출하기 어렵다. 특정 DNA 조각들을 슬라이드상에 정렬한 microarray가 개발되기 시작하면서 1997년에 약 20종류의 표적 DNA가 고정된 유리슬라이드상에서 CGH를 시행한 matrix-based CGH가 소개되었다7).
질의응답 정보가 도움이 되었나요?

참고문헌 (33)

  1. Tjio JH, Levan A. The chromosome number of man. Hereditas 1956;42:1-6. 

  2. Lejeune JM, Gautier M, Turpin R. Etude des chromosomes somatiques de neuf enfants mongoliens. CR Acad Sci Paris 1958;248:1721-2. 

  3. Speicher MR, Carter NP. The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet 2005;6:782-92. 

  4. Schinzel A. Microdeletion syndromes, balanced translocations, and gene mapping. J Med Genet 1988;25:454-62. 

  5. Cho EH, Park BY, Cho JH, Kang YS. Comparing two diagnostic laboratory tests for several microdeletions causing mental retardation syndromes: multiplex ligation-dependent amplification vs fluorescent in situ hybridization. Korean J Lab Med 2009;29:71-6. 

  6. Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 1992;258:818-21. 

  7. Solinas-Toldo S, Lampel S, Stilgenbauer S, Nickolenko J, Benner A, Dohner H, et al. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 1997;20:399-407. 

  8. Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D, et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 1998;20:207-11. 

  9. Feuk L, Carson AR, Scherer SW. Structural variation in the human genome. Nat Rev Genet 2006;7:85-97. 

  10. Carter NP. Methods and strategies for analyzing copy number variation using DNA microarrays. Nat Genet 2007;39:S16-21. 

  11. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, et al. Detection of large-scale variation in the human genome. Nat Genet 2004;36:949-51. 

  12. Ishkanian AS, Malloff CA, Watson SK, DeLeeuw RJ, Chi B, Coe BP, et al. A tiling resolution DNA microarray with complete coverage of the human genome. Nat Genet 2004;36:299-303. 

  13. Fiegler H, Redon R, Andrews D, Scott C, Andrews R, Carder C, et al. Accurate and reliable high-throughput detection of copy number variation in the human genome. Genome Res 2006;16:1566-74. 

  14. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, et al. Global variation in copy number in the human genome. Nature 2006;444:444-54. 

  15. Wong KK, deLeeuw RJ, Dosanjh NS, Kimm LR, Cheng Z, Horsman DE, et al. A comprehensive analysis of common copy-number variations in the human genome. Am J Hum Genet 2007;80:91-104. 

  16. Greshock J, Feng B, Nogueira C, Ivanova E, Perna I, Nathanson K, et al. A comparison of DNA copy number profiling platforms. Cancer Res 2007;67:10173-80. 

  17. McCarroll SA, Hadnott TN, Perry GH, Sabeti PC, Zody MC, Barrett JC, et al. Common deletion polymorphisms in the human genome. Nat Genet 2006;38:86-92. 

  18. Kamath BM, Thiel BD, Gai X, Conlin LK, Munoz PS, Glessner J, et al. SNP array mapping of chromosome 20p deletions: genotypes, phenotypes, and copy number variation. Hum Mutat 2009;30:371-8. 

  19. Talseth-Palmer BA, Bowden NA, Meldrum C, Nicholl J, Thompson E, Friend K, et al. A 1q44 deletion, paternal UPD of chromosome 2 and a deletion due to a complex translocation detected in children with abnormal phenotypes using new SNP array technology. Cytogenet Genome Res 2009;124:94-101. 

  20. Manning M, Hudgins L. Array-based technology and recommendations for utilization in medical genetics practice for detection of chromosomal abnormalities. Genet Med 2010;12:742-5. 

  21. Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 2010;86:749-64. 

  22. Shaffer LG, Beaudet AL, Brothman AR, Hirsch B, Levy B, Martin CL, et al. Microarray analysis for constitutional cytogenetic abnormalities. Genet Med 2007;9:654-62. 

  23. Fan YS, Jayakar P, Zhu H, Barbouth D, Sacharow S, Morales A, et al. Detection of pathogenic gene copy number variations in patients with mental retardation by genomewide oligonucleotide array comparative genomic hybridization. Hum Mutat 2007;28:1124-32. 

  24. Pickering DL, Eudy JD, Olney AH, Dave BJ, Golden D, Stevens J, et al. Array-based comparative genomic hybridization analysis of 1176 consecutive clinical genetics investigations. Genet Med 2008;10:262-6. 

  25. Shaffer LG, Bejjani BA, Torchia B, Kirkpatrick S, Coppinger J, Ballif BC. The identification of micro-deletion syndromes and other chromosome abnormalities: cytogenetic methods of the past, new technologies for the future. Am J Med Genet C Semin Med Genet 2007;145C:335-45. 

  26. Seo EJ, Jun KR, Yoo HW, Yoo HK, Lee JO. Identification of a novel deletion region in 3q29 micro-deletion syndrome by oligonucleotide array comparative genomic hybridization. Korean J Lab Med 2010;30:70-5. 

  27. Choi JH, Kang M, Kim GH, Hong M, Jin HY, Lee BH, et al. Clinical and Functional Characteristics of a Novel Heterozygous Mutation of the IGF1R Gene and IGF1R Haploinsufficiency due to Terminal 15q26.2->qter Deletion in Patients with Intrauterine Growth Retardation and Postnatal Catch-Up Growth Failure. J Clin Endocrinol Metab 2010. 

  28. Tiu RV, Gondek LP, O'Keefe CL, Huh J, Sekeres MA, Elson P, et al. New lesions detected by single nucleotide polymorphism array-based chromosomal analysis have important clinical impact in acute myeloid leukemia. J Clin Oncol 2009;27:5219-26. 

  29. Shaffer LG, Bui TH. Molecular cytogenetic and rapid aneuploidy detection methods in prenatal diagnosis. Am J Med Genet C Semin Med Genet 2007;145C:87-98. 

  30. Maya I, Davidov B, Gershovitz L, Zalzstein Y, Taub E, Coppinger J, et al. Diagnostic utility of array-based comparative genomic hybridization (aCGH) in a prenatal setting. Prenat Diagn 2010;30:1131-7. 

  31. ACOG Committee Opinion No. 446: array comparative genomic hybridization in prenatal diagnosis. Obstet Gynecol 2009;114:1161-3. 

  32. Park H, Kim JI, Ju YS, Gokcumen O, Mills RE, Kim S, et al. Discovery of common Asian copy number variants using integrated high-resolution array CGH and massively parallel DNA sequencing. Nat Genet 2010;42:400-5. 

  33. Lee C, Iafrate AJ, Brothman AR. Copy number variations and clinical cytogenetic diagnosis of constitutional disorders. Nat Genet 2007;39:S48-54. 

LOADING...

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로