• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

자유 낙하하는 사각 실린더 주위의 유동 구조

Flow Structures Around a Freely-falling, Rectangular Cylinder


The flow around a two-dimensional, rectangular cylinder that is freely falling in a channel was simulated using the immersed boundary method with direct forcing to determine the interactions between the fluid and the structure. The results of the present study were in good agreement with previous experimental results. Regardless of the H/L ratio (where H and L are the height and width of the rectangular cylinder, respectively), the flow structures had essentially the same pattern as the two symmetrical circulations that form about the horizontal center of the cylinder, with those centers located at each lateral position near the wake. When the cylinder approaches very close to the bottom, a jet-like flow appeared between the bottom of the rectangular cylinder and the channel. When the jet-like flow goes through the channel, surrounding fluids are sucked into this jet, forming the secondary vortices.

참고문헌 (12)

  1. Feng, Z. and Michaelides, E.E. (2005). ”Proteus: A Direct Forcing Method in the Simulations of Particulate Flows”, J. Comput. Phys., Vol 202, pp 20-51. 
  2. Glowinski, R., Pan, T.W., Hesla, T.I. and Joseph, D.D. (1999). “A Distributed Lagrange Multiplier/Fictitious Domain Method for Particulate Flows”, Int. J. Multiphase Flow, Vol 25, pp 755-794. 
  3. Glowinski, R., Pan, T.W., Hesla, T.I., Joseph, D.D. and Periaux, J. (2001). “A Fictitious Domain Approach to the Direct Numerical Simulation of Incompressible Viscous Flow Past Moving Rigid Bodies: Application to Particulate Flow”, J. Comp. Phys., Vol 169, pp 363-426. 
  4. Haider, A. and Levenspiel, O. (1989). ”Drag Coefficient and Terminal Veolocity of Spherical and Nonspherical Rarticles”, Power Technol., Vol 58, pp 63-70. 
  5. Hofler, K. and Schwarzer, S. (2000). Navier-Stokes Simulation with Constraint Forces: Finite-difference Method for Particle, Laden Flows and Complex Geometries”, Phys. Rev. E, Vol 61-6, pp 7146-7160. 
  6. Kim, J. and Moin, P. (1985). “Application of a Fractional-step Method to Incompressible Navier-stokes Equations”, J. Comput. Phys., Vol 59, pp 308-323. 
  7. Roma, A., Peskin, C. and Berger, M. (1999). ”An Adaptive Version of the Immersed Boundary Method”, J. Comput. Phys., Vol 153, pp 15-53. 
  8. Uhlmann, M. (2005). “An Immersed Boundary Method with Direct Forcing for the Simulation of Particulate Flows”, J. Comp. Phys., Vol 209, pp 448-476. 
  9. Yu, Z., Shao, X. and Wachs, A. (2006a). ”A Fictitious Domain Method for Particulate Flows with Heat Transfer”, J. Comput. Phys., Vol 217, pp 424-452. 
  10. Yu, Z., Wachs, A. and Peysson, Y. (2006b). ”Numerical Simulation of Particle Sedimentation in Shear-thinning Fluids with a Fictitious Domain Method”, J. Non-Newtonian Fluid Mech., Vol 136, pp 126-139. 
  11. Wachs, A. (2009). ”A DEM-DLM/FD Method for Direct Numerical Simulation of Particulate Flows: Sedimentation of Polygonal Isometric Particle in a Newtonian Fluid with Collisions”, Comput. Fluids, Vol 38, pp 1608-1628. 
  12. Zang, Y., Street, R. L. and Koseff, J. R. (1994). ”A Nonstaggered Grid, Fractional Step Method for Time-Dependent Incompressible Navier-Stokes Equations in Curvilinear Coordinate”, J. comput. Phys., Vol 114, pp 18-33. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음


원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. 원문복사서비스 안내 바로 가기

상세조회 0건 원문조회 0건

DOI 인용 스타일