$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

초록

지문인식은 융선과 골로 이루어진 지문 정보를 이용하여 개인의 신원을 식별하는 바이오인식 기술이다. 대부분의 지문인식 시스템들은 접촉식 센서를 이용하여 지문 영상을 획득한 후, 지문의 특징점을 검출하여 인식을 수행한다. 접촉식 지문 인식은 센서와 지문과의 접촉으러 인해 동일한 표기의 선명한 영상을 얻을 수 있는 장점을 지닌다. 하지만, 사용자의 손가락과 센서의 접촉 입력 차이에 의해 상당히 건조한 지문이나 습한 지문의 경우 지문 영상의 품질이 떨어질 수 있는 가능성이 있고, 센서에 남아있는 잔존 지문 정보로부터 사용자의 지문이 유출될 수 있는 문제점이 있다. 이를 해결하기 위해 비접촉식 지문인식 장비들이 제안되고 있지만 비접촉식으로 지문 영상을 취득할 경우, 조명 변화에 의해 영상의 품질이 훼손되어 지문 특징점 오검출 증가와 함께 인식률 감소의 문제가 발생된다. 따라서 본 논문에서는 조명 변화에 강인한 LDP(Local Derivative Pattern) 기반의 비접촉식 지문인식 방법을 제안한다. LDP 방법을 기반으로 지문의 융선과 골이 반복되는 특정 패턴을 효율적으로 추출하였으며, 추출된 특정코드에 대한 히스토그램을 구성한 후 카이 제곱 거리를 측정하여 최종적으로 개인의 신원을 식별하였다. 실험 결과, 제안하는 LDP 기반의 비접촉식 지문인식 방법은 기존의 LBP 기반의 방법보다 EER(Equal Error Rate)이 0.521% 만큼 감소하였다.

Abstract

Fingerprint recognition is a biometric technology to identify individual by using fingerprint features such ridges and valleys. Most fingerprint systems perform the recognition based on minutiae points after acquiring a fingerprint image from contact type sensor. They have an advantage of acquiring a clear image of uniform size by touching finger on the sensor. However, they have the problems of the image quality can be reduced in case of severely dry or wet finger due to the variations of touching pressure and latent fingerprint on the sensor. To solve these problems, the contactless capturing devices for a fingerprint image was introduced in previous works. However, the accuracy of detecting minutiae points and recognition performance are reduced due to the degradation of image quality by the illumination variation. So, this paper proposes a new LDP-based fingerprint recognition method. It can effectively extract fingerprint patterns of iterative ridges and valleys. After producing histograms of the binary codes which are extracted by the LDP method, chi square distance between the enrolled and input feature histograms is calculated. The calculated chi square distance is used as the score of fingerprint recognition. As the experimental results, the EER of the proposed approach is reduced by 0.521% in comparison with that of the previous LBP-based fingerprint recognition approach.

참고문헌 (23)

  1. 반성범, 문지현, 정용화, 김학일, "지문 인식 기술 동향," 전자통신동향분석, 제16권, 제5호, pp. 46-54. 
  2. A. Jain, L. Hong, and R. Bolle, "On-line Fingerprint Verification," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.19, No.4, pp.302-314, 1997. 
  3. N. Sharma, and J. Lee, "Fingerprint Minutiae Matching Algorithm using Distance Histogram of Neighborhood," Journal of Korea Multimedia Society, Vol.10, No.12, pp.1577-1584, 2007. 
  4. A. K. Jain, A. Ross, and S. Prabhakar, "An Introduction to Biometric Recognition," IEEE Transactions on Circuits and Systems for Video Technology, Vol.14, No.1, pp.4-19, Jan. 2004. 
  5. G. Parziale, and Y. Chen, "Advanced Technologies for Touchless Fingerprint Recognition," Handbook of Remote Biometrics, pp.83-109, 2009. 
  6. C. Lee, S. Lee and J. Kim, "A Study of Touchless Fingerprint Recognition System," Lecture Notes in Computer Science, Vol. 4109, pp.358-365, 2006. 
  7. J. Palma, C, Liessner, and S. Mil'Shtein, "Contactless Optical Scanning of Fingerprints with $180^{\circ}$ View," Scanning, Vol.28, issue 6, pp.301-304, 2007. 
  8. B. J. Kang, H. C. Lee, K. R. Park, and J. N. Kim, "Multimodal Biometrics Based on the Fusion of Fingerprint and Finger-vein Recognition." IET computer vision, submitted. 
  9. T. Ojala, M. Pietikainen, and D. Harwood, "A Comparative Study of Texture Measures with Classification Based on Feature Distributions," Pattern Recognition, Vol.29, issue. 1, pp.51-59, 1996 
  10. T. Ojala, M. Pietikainen, and T. Maenpaa, "Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.24, No.7, pp.971-987, 2002. 
  11. E. C. Lee, H. C. Lee, and K. R. Park, "Finger Vein Recognition by Using Minutia Based Alignment and Local Binary Pattern-based Feature Extraction," International Journal of Imaging Systems and Technology, Vol.19, issue 3, pp.179-186, 2009. 
  12. H. C. Lee, B. J. Kang, E. C. Lee, and K. R. Park, "Finger Vein Recognition by Using Weighted LBP Code Based on SVM," Journal of Zhejiang University-Science C, Vol.11, No.7, pp.514-524, July 2010. 
  13. T. Ahonen, A. Hadid, and M. Pietikainen, "Face Description with Local Binary Patterns: Application to Face Recognition," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.28, No.12, pp.2037-2041, 2006. 
  14. G. Guo, and M. J. Jones, "Iris Extraction Based on Intensity Gradient and Texture Difference," Proc. of the IEEE Workshop on Applications of Computer Vision, pp.1-6, 2008. 
  15. H. Yang, and Y. Wang, "A LBP-based Face Recognition Method with Hamming Distance Constraint," Proc. of the 4th International Conference on Image and Graphics, pp.645- 649, 2007. 
  16. B. Zhang, Y. Gao, S. Zhao, and J. Liu, "Local Derivative Pattern Versus Local Binary Pattern: Face Recognition With High-Order Local Pattern Descriptor," IEEE Transaction on Image Processing, Vol.19, No.2, 2010. 
  17. H. Ling, D. W. and Jacobs, "Using the Inner- Distance for Classification of Articulated Shapes," Proc. of the 2005 IEEE Conference on Computer Vision and Pattern Recognition, Vol.2, pp.719-726, 2005. 
  18. Logitech QuickCam, http://www.logitech.com (accessed on 2010.02.12) 
  19. R C. Gonzalez, and R. E. Woods, Digital Image Processing 3rd edition, Pearson Prentice Hall, 2008. 
  20. 심재창, 김세영, 최미순, 김익동, "양면 지문 입력 방법," 한국멀티미디어학회논문지, 제11권, 제3호, pp.323-330, 2008년. 
  21. J. R. Parker, Practical Computer Vision using C, Wiley Computer Publishing, 1994. 
  22. M. Sonka, V. Hlavac, and R. Boyle, "Image Processing, Analysis, and Machine Vision," CL-Engineering, 1998. 
  23. L. Wang, G. Leedham, and D. S.Cho, "Minutiae Feature Analysis for Infrared Hand Vein Pattern Biometrics," Pattern Recognition, Vol.41, No.3, pp.920-929, 2008. 

이 논문을 인용한 문헌 (2)

  1. Kang, Seung-Ho 2013. "A Fingerprint Classification Method Based on the Combination of Gray Level Co-Occurrence Matrix and Wavelet Features" 멀티미디어학회논문지 = Journal of Korea Multimedia Society, 16(7): 870~878 
  2. Woo, Hyo-Jeong ; Lee, Seul-Gi ; Kim, Dong-Woo ; Ryu, Sung-Pil ; Ahn, Jae-Hyeong 2014. "Eye and Mouth Images Based Facial Expressions Recognition Using PCA and Template Matching" 한국콘텐츠학회논문지 = The Journal of the Korea Contents Association, 14(11): 7~15 

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. 원문복사서비스 안내 바로 가기

상세조회 0건 원문조회 0건

DOI 인용 스타일