• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보


This paper presents the numerical valuation of the two-asset step-down equitylinked securities (ELS) option by using the operator-splitting method (OSM). The ELS is one of the most popular financial options. The value of ELS option can be modeled by a modified Black-Scholes partial differential equation. However, regardless of whether there is a closedform solution, it is difficult and not efficient to evaluate the solution because such a solution would be represented by multiple integrations. Thus, a fast and accurate numerical algorithm is needed to value the price of the ELS option. This paper uses a finite difference method to discretize the governing equation and applies the OSM to solve the resulting discrete equations. The OSM is very robust and accurate in evaluating finite difference discretizations. We provide a detailed numerical algorithm and computational results showing the performance of the method for two underlying asset option pricing problems such as cash-or-nothing and stepdown ELS. Final option value of two-asset step-down ELS is obtained by a weighted average value using probability which is estimated by performing a MC simulation.

참고문헌 (14)

  1. Y. Achdou and O. Pironneau, Computational methods for option pricing, SIAM, Philadelphia, 2005. 
  2. F. Black and M. Sholes, The pricing of options and corporate liabilities, Journal of Political Economy, 81 (3) (1973), 637-659. 
  3. D.J. Duffy, Finite difference methods in financial engineering : a partial differential equation approach, John Wiley and Sons, New York, 2006. 
  4. E.G. Haug, The complete guide to option pricing formulas, McGraw-Hill, New York 1997. 
  5. S. Ikonen and J. Toivanen, Operator splitting methods for American option pricing, Applied Mathematics Letters, 17 (2004), 809-814. 
  6. R. Kangro and R. Nicolaides, Far field boundary conditions for Black-Scholes equations, SIAM Journal on Numerical Analysis , 38 (4) (2000), 1357-1368. 
  7. K.S. Lee, Y.E. Gwong, and J.H. Shin, Deravatives modeling I: Using MATLAB$^{\circledR}$, A-Jin, Seoul, 2008. 
  8. C.W.Oosterlee, On multigrid for linear complementarity problems with application to American-style options, Electronic Transactions on Numerical Analysis, 15 (2003), 165-185. 
  9. J. Persson and L. von Sydow, Pricing European multi-asset options using a space-time adaptive FD-method, Computing and Visualization in Science, 10 (2007), 173-183. 
  10. R. Seydel, Tools for computational finance, Springer Verlag, Berlin, 2003. 
  11. D. Tavella and C. Randall, Pricing financial instruments:the finite difference method, John Wiley and Sons, New York, 2000. 
  12. J. Topper, Financial engineering with finite elements, John Wiley and Sons, New York, 2005. 
  13. P. Wilmott, J. Dewynne and S. Howison, Option pricing : mathematical models and computation, Oxford Financial Press, Oxford, 1993. 
  14. R. Zvan, K. R. Vetzal and P.A. Forsyth, PDE methods for pricing barrier options, Journal of Economic Dynamics and Control, 24 (2000), 1563-1590. 

이 논문을 인용한 문헌 (1)

  1. Jeong, Darae, Li, Yibao, Choi, Yongho, Moon, Kyoung-Sook, Kim, Junseok 2013. "AN ADAPTIVE MULTIGRID TECHNIQUE FOR OPTION PRICING UNDER THE BLACK-SCHOLES MODEL" Journal of the Korean Society for Industrial and Applied Mathematics, 17(4): 295~306 


원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. 원문복사서비스 안내 바로 가기

상세조회 0건 원문조회 0건

DOI 인용 스타일

"" 핵심어 질의응답