$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

Nowadays due to the rapid advances in the field of information systems, transactional databases are being updated regularly and/or periodically. The knowledge discovered from these databases has to be maintained, and an incremental updating technique needs to be developed for maintaining the discovered association rules from these databases. The concept of Temporal Association Rules has been introduced to solve the problem of handling time series by including time expressions into association rules. In this paper we introduce a novel algorithm for Incremental Mining of General Temporal Association Rules (IMTAR) using an extended TFP-tree. The main benefits introduced by our algorithm are that it offers significant advantages in terms of storage and running time and it can handle the problem of mining general temporal association rules in incremental databases by building TFP-trees incrementally. It can be utilized and applied to real life application domains. We demonstrate our algorithm and its advantages in this paper.

참고문헌 (12)

  1. R. Agrawal, T. Imielinski, A. Swan, “Mining Association Rules Between Set of Items in Large Databases”, In ACM SIGMOD International Conference on Management of Data, pp.207-216, 1995. 
  2. D. W., Cheung, J. Han, V. Neg, Y. Wong, “Maintenance of Discovered Association Rules in Large Databases: An Incremental Updating Technique”, In the International Conference on Data Engineering, pp.106-114, 1996. 
  3. W. Wang, Y. Yang, R. Muntz, “Temporal Association Rules with Numeric Attribute”, In NCLA CSD Technical Report. 1999. 
  4. W. Wang, Y. Yang, R. Muntz, R., “Temporal Association Rules on Evolving Numerical Attribute”, In the 17th International Conference on Data Engineering, pp.283-292, 2001. 
  5. C.H. Lee, M.S. Chen, C.R. Lin, C, R., “Progressive Partition Miner: An Efficient Algorithm for Mining General Temporal Association Rules”, In IEEE Transaction on Knowledge Engineering, pp.1004-1017, 2003. 
  6. F. Conen, P. Leng, S. Ahmed, “Data Structure for Association Rules Mining: T-tree and P-tree”, In IEEE Transaction on Knowledge Engineering, pp.774-778, 2004. 
  7. R. Rymon, “Searching through systematic set enumeration”, In the 3rd International Conference on Principles of Knowledge and Reasoning, 1993. 
  8. C. Zheng, “An Incremental updating technique for mining indirect association rules,” Proceedings of the Seventh International Conference on Machine Learning and Cybernetics, Kunming, pp.217-221, 2008. 
  9. X. Li, Z.H. Deng and S. Twang, “A Fast Algorithm for Maintenance of Association Rules in Incremental Databases” Adnaced Data Mining and Application, pp.56-63, 2006. 
  10. M. Adnan, R. Alhajj, and K. Barker “Constructing Complete FP-Tree for Incremental Mining of Frequent Patterns in Dynamic Databases”, Advances in Applied Artificial Intelligence, 19th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE, pp.363-372, 2006. 
  11. W. Cheung, and O. R. Zaiane, “Incremental Mining of Frequent Patterns without Candidate Generation or Support Constraint”, in Proc. IDEAS’03, 2003, vol. 1098-8068/03, p.111. 
  12. J. S. Park, M. S. Chen and P.S. Yu, “An Effective Hashed-Based Algorithm for Mining Association Rules”, in proc. 1995 ACM-SIGMOD Int. Conf. Management of Data, San Joe, CA. May, 1995. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일