• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

A Study on Distributions of Boron Ions Implanted by Using B and BF2 Dual Implantations in Silicon


For the fabrication of PMOS and integrated semiconductor devices, B, $BF_2$ and dual elements with B and $BF_2$ can be implanted in silicon. 15 keV B ions were implanted in silicon at $7^{\circ}$ wafer tilt and a dose of $3.0{\times}10^{16}\;cm^{-2}$. 67 keV $BF_2$ ions were implanted in silicon at $7^{\circ}$ wafer tilt and a dose of $3.0{\times}10^{15}\;cm^{-2}$. For dual implantations, 67 keV $BF_2$ and 15keV B were carried out with two implantations with dose of $1.5{\times}10^{15}\;cm^{-2}$ instead of $3.0{\times}10^{15}\;cm^{-2}$, respectively. For the electrical activation, the implanted samples were annealed with rapid thermal annealing at $1,050^{\circ}C$ for 30 seconds. The implanted profiles were characterized by using secondary ion mass spectrometry in order to measure profiles. The implanted and annealed results show that concentration profiles for the ${BF_2}^+$ implant are shallower than those for a single $B^+$ and dual ($B^+$ and ${BF_2}^+$) implants in silicon. This effect was caused by the presence of fluorine which traps interstitial silicon and ${BF_2}^+$ implants have lower diffusion effect than a single and dual implantation cases. For the fabricated diodes, current-voltage (I-V) and capacitance-voltage (C-V) were also measured with HP curve tracer and C-V plotter. Electrical measurements showed that the dual implant had the best result in comparison with the other two cases for the turn on voltage characteristics.

저자의 다른 논문

참고문헌 (16)

  1. W. C. Jung, J. KEEME, 15, 289 (2002). 
  2. W. C. Jung, J. Korean Phys. Soc. 46, 1218 (2005). 
  3. W. C. Jung and K. D. Lee, J. Korean Phys. Soc. 45, 1078 (2004). 
  4. R. G. Wilson, J. Appl. Phys. 54, 6879 (1983) [DOI: 10.1063/1.331993]. 
  5. W. S. Yoo, T. Fukada, T. Setokubo, K. Aizawa, and T. Ohsawa, Jpn. J. Appl. Phys. 42, 1123 (2003) [DOI: 10.1143/JJAP. 42.1123]. 
  6. A. Dusch, J. Marcon, K. Masmoudi, F. Olivie, M. Benzohra, K. Ketata, and M. Ketata, Mater. Sci. Eng. B 80, 65 (2001) [DOI: 10.1016/S092-5107(00)00590-0]. 
  7. H. Ryssel and I. Ruge, “Ion Implantation”, Wiley, New York, (1986) p. 125. 
  8. L. Frey, S. Bogen, L. Gong, W. Jung, and H. Ryssel, Nucl. Instrum. Methods Phys. Res. Sect. B 62, 410 (1992) [DOI: 10.1016/0168-583X(92)95267-U]. 
  9. L. Gong, S. Bogen, L. Frey, W. Jung, and H. Ryssel, Microelectron. Eng. 19, 495 (1992) [DOI: 10.1016/0167-9317(92)90482-7]. 
  10. A. F. Tasch and S. K. Banerjee, Nucl. Instrum. Methods Phys. Res. Sect. B 112, 177 (1996) [DOI: 10.1016/0168-583X(95)01246-X]. 
  11. U. Littmark and J. F. Ziegler, Phys. Rev. 23, (1980) [DOI: 10.1103/PhysRevA.23.64]. 
  12. J. P. Biersack and J. F. Ziegler, “Ion Implantation Techniques”, Springer-Verlag, Berlin, (1982) p. 281. 
  13. T. E. Seidel, Nucl. Instrum. Methods Phys. Res. B 21, 96 (1987). 
  14. J. P. Biersack, Nucl. Instrum. Methods Phys. Res. B 35, 205 (1988). 
  15. M. C. Paek, O. J. Kwon, J. Y. Lee, and H. B. Im, J. Appl. Phys. 70, 4176 (1991). 
  16. C. W. Bates, Jr. , Appl. Phys. Lett. 45, 1058 (1984). 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

DOI 인용 스타일