$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

We compared rheological properties of various polymer solutions as measured by particle tracking microrheology and conventional rheometry. First, zero shear viscosity was obtained using Stokes-Einstein equation at longer times of mean square displacement (MSD) curve in particle tracking microrheology, and compared to the one determined by rotational-type bulk rheometer. The zero shear viscosity from particle tracking microrheology matched well with the one from bulk rheometry. Second, dynamic modulus was determined using two models, Maxwell model and Euler's equation, since these have been most frequently adopted in previous studies. When Euler's equation was used, loss modulus matched well with the one from bulk rheometry for all frequency range. However, storage modulus was unstable at low frequencies, stemming from non-smoothing out in fitting process. When the Maxwell model was used, two results agreed well at low concentration of polymer solution, and the dynamic modulus at small frequency region which are difficult to detect in bulk rheometry could also be measured. However, both zero shear viscosity and dynamic modulus at higher concentration polymer solution from particle tracking microrheological measurement deviated from those from bulk rheometry, due to the error caused by limited resolution of the apparatus. Based on these results, we presented a guideline for the reliable performance of this new technique.

참고문헌 (26)

  1. Breedveld, V. and D. J. Pine, 2003, Microrheology as a tool for high-throughput screening, J. of Materials Science 38, 4461-4470. 
  2. Chae , B. S. and Eric.M. Furst, 2005, Probe surface chemistry dependence and local polymer network structure in F-actin microrheology, Langmuir 21, 3084-3089. 
  3. Dasgupta, B. R., Shang-You Tee, John C. Crocker and D. A. Weitz, 2002, Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering, Physical Review E 65, 051505. 
  4. Hassan, P. A., K. Bhattacharya, S. K. Kulshreshtha and S. R. Raghavan, 2005, Microrheology of wormlike micellar fluids from the diffusion of colloidal probes, J. Physical Chemistry, 109, 8744-8748. 
  5. Mason, T. G. and D. A. Weitz, 1995, Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids, Physical Review Letters 74, 1250-1253. 
  6. Van Zanten, J. H., Samiul Amin and Ahmed A. Abdala, 2004, Brownian motion of colloidal spheres in aqueous PEO solutions, Macromolecules 37, 3874-3880. 
  7. Xu, J., Yiider Tseng, Craig J. Carriere and Denis Wirtz, 2002, Microheterogeneity and microrheology of wheat gliadin suspensions studied by multiple-particle tracking, Biomacromolecules 3, 92-99. 
  8. Macosko, C. W., 1994, Rheology: principles, measurements, and applications, VCH. 
  9. Mason, T. G., K. Ganesan, J. H. van Zanten, D. Wirtz and S. C. Kuo, 1997, Particle tracking microrheology of complex fluids, Physical Review Letters 79(17), 3282-3285. 
  10. Mason, T. G., 2000, Estimating the dynamic moduli of complex fluids using the generalized Stokes-Einstein equation, Rheologica Acta 39, 371-378. 
  11. Oppong, F. K., Laurent Rubatat, Barbara J. Frisken, Arthoru E. Bailey and John R. de Bruyn, 2006, Microrheology and structure of a yield-stress polymer gel, Physical Review E 73, 041405. 
  12. Tseng, Y., Thomas P. Kole and Denis Wirtz, 2002, Micromechanical mapping of live cells by multiple particle tracking microrheology, Biophysical J. 83, 3162-3176. 
  13. Larsen, T. H. and Eric M. Furst, 2008, Microrheology of the liquid- solid transition during gelation, Physical Review Letters 100, 146001. 
  14. Palmer, A., Jingyuan Xu and Denis Wirtz, 1998, High frequency viscoelasticity of crosslinked actin filament networks measured by DWS, Rheologica Acta 37, 97-106. 
  15. Xu, J., Virgile Viasnoff and Denis Wirtz, 1998, Compliance of actin filament networks measured by particle-tracking microrheology and diffusing wave spectroscopy, Rheologica Acta 37, 387-398. 
  16. Savin, T. and Patrick S. Doyle, 2005, Static and dynamic errors in particle tracking microrheology, Biophysical J. 88, 623-638. 
  17. Tseng, Y., Thomas P. Kole, Ssu-Hsien J. Lee and Denis Wirtz, 2002, Local dynamics and viscoelastic properties of cell biological systems, Current Opinion in Colloid & Interface Science 7, 210-217. 
  18. Slopek, R. P., Haris K. McKinley, Clifford L. Henderson and Victor Breedveld, 2006, In situ monitoring of mechanical properties during photopolymerization with particle tracking microrheology, Polymer 47, 2263-2268. 
  19. Phillies, G. D. J and P. Peczak, 1988, The ubiquity of stretched-exponential forms in polymer dynamics, Macromolecules 21, 214. 
  20. Apgar, J., Yiider Tseng, Elena Fedorov, Matthew B. Herwig, Steve C. Almo and Denis Wirtz, 2000, Multiple-particle tracking measurements of heterogeneities in solutions of actin filaments and actin bundles, Biophysical J. 79, 1095-1106. 
  21. Hines, William W. and Douglas C. Montgomery, 1990, Probability and statistics in engineering and management science. 
  22. Willenbacher, N., C.Oelschlaeger and M. Schopferer, 2007, Broad bandwidth optical and mechanical rheometry of wormlike micelle solutions, Physical Review Letters 99, 068302. 
  23. Rubinstein, M. and R. H. Colby, 2003, Polymer Physics, Oxford University Press, Oxford. 
  24. Waigh, TA, 2005, Microrheology of complex fluid, Reports on Progress in Physics 68, 685-742. 
  25. Crocker, J. C. and David G. Grier, 1996, Methods of digital video microscopy for colloidal studies, J. of Colloid and Interface science 179, 298-310. 
  26. Lu, Q. and Machael J. Solomon, 2002, Probe size effects on the microrheology of associating polymer solutions, Physical Review E 66, 061504. 

이 논문을 인용한 문헌 (1)

  1. 2012. "" Korea-Australia rheology journal, 24(4): 333~337 

원문보기

원문 PDF 다운로드

  • 원문 PDF 정보가 존재하지 않습니다.

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일