• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보


Periodical impulses are vital indicators of rotating machinery faults. Therefore, the extraction of weak periodical impulses from vibration signals is of great importance for incipient fault detection. However, measured signals are often severely tainted by various noises, which makes the detection of impulses rather difficult. As such, a proper signal processing technique is necessary. In this paper, a hybrid method comprised of wavelet filter and morphological signal processing (MSP) is proposed for this task. The wavelet filter is used to eliminate the noise and enhance the impulsive features. Then, the filtered signal is processed by the morphological closing operator and a local maximum algorithm to isolate periodical impulses. To select the proper parameters of the joint approach, i.e., the center frequency, the bandwidth of wavelet filter, and the length of flat structuring elements (SE), a novel optimization algorithm based on differential evolution (DE) is developed. The results of simulated experiments and bearing vibration signal analysis verify the effectiveness of the proposed method.

참고문헌 (29)

  1. P. McFadden and J. Smith, Model for the vibration produced by a single point defect in a rolling element bearing, Journal of Sound and Vibration, 96 (1) (1984) 69-82. 
  2. H. Qiu, et al., Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics, Journal of Sound and Vibration, 289 (4-5) (2006) 1066-1090. 
  3. J. Lin, et al., Mechanical fault detection based on the wavelet de-noising technique, Journal of Vibration and Acoustics, Transactions of the ASME, 126 (1) (2004) 9-16. 
  4. W. Yang and X. Ren, Detecting Impulses in Mechanical Signals by Wavelets, EURASIP Journal on Applied Signal Processing, (2004) 1156-1162. 
  5. N. G. Nlkolaou and I. A. Antoniadis, Application of morphological operators as envelope extractors for impulsivetype periodic signals, Mechanical Systems and Signal Processing, 17 (6) (2003) 1147-1162. 
  6. J. Wang, et al., Application of improved morphologica1 filter to the extraction of impulsive attenuation signals, Mechanical Systems and Signal Processing, 23 (1) (2009) 236-245. 
  7. T. I. Patargias, et al., Perfonnance assessment of a morphological index in fault prediction and trending of defective rolling element bearings, Nondestructive Testing and Evaluation, 21 (1) (2006) 39-60. 
  8. L. Zhang, et al., Approach to extracting gear fault feature based on mathematical morphological filtering, Chinese Journal of Mechanical Engineering, 43 (2) (2007) 71-75. 
  9. R. Hao and F. Chu, Morphological undecimated wavelet decomposition for fault diagnostics of rolling element bearings, Journal of Sound and Vibration, 320 (4-5) (2009)1164-1177. 
  10. P. Maragos and R. Schafer, Morphological filters--Part I: Their set-theoretic analysis and relations to linear shiftinvariant filters, IEEE Transactions on Acoustics. Speech and Signal Processing, 35 (8) (1987) 1153-1169. 
  11. J. Serra, Image analysis and mathematical morphology, Academic Press, Inc. Orlando, FL, USA, (1983). 
  12. J. Serra, Morphological filtering: an overview, Signal Processing, 38 (1) (1994) 3.11. 
  13. G. Y. Luo, et aI., Real-time condition monitoring by significant and natural frequencies analysis of vibration signal with wavelet filter and autocorrelation enhancement, Journal of Sound and Vibration, 236 (3) (2000) 413-430. 
  14. W. He, et aI., Bearing fault detection based on optimal wavelet filter and sparse code shrinkage, Measurement, 42(7)(2009) 1092-1102. 
  15. J. Lin and M. J. Zuo, Gearbox fault diagnosis using adaptive wavelet filter, Mechanical Systems and Signal Processing, 17 (6) (2003) 1259-1269. 
  16. I. S. Bozchalooi and M. Liang, A joint resonance frequency estimation and in-band noise reduction method for enhancing the detectability of bearing fault signals, Mechanical Systems and Signal Processing, 22 (4) (2008) 915-933. 
  17. N. Karaboga, Digital IIR Filter Design Using Differential Evolution Algorithm, EURASIP Journal on Applied Signal Processing, 8 (2005) 1269-1276. 
  18. K. V. Price, et al., Differential Evolution: A Practical Approach to Global Optimization, Springer-Verlag, Berlin,Germany (2005). 
  19. P. Kaelo and M. M. Ali, A numerical study of some modified differential evolution algoritlmls, European Journal of Operational Research, 169 (3) (2006) 1176-1184. 
  20. N. Yigit and N. Karaboga, Noise Cancellation In Adaptive Filters With Diffrential Evolution Algorithm, Signal Processing and Communications Applications, 2007, SIU 2007, IEEE 15th (2007) 1-4. 
  21. S, G. Mallat, A Wavelet Tour of Signal Processing, Second Ed. Academic Press, San Diego, USA (1999). 
  22. J. Liu, et al., An extended wavelet spectrum for bearing fault diagnostics, IEEE Transactions on Instrumentation and Measurement, 57 (12) (2008) 2801-2812. 
  23. M. Mitchell, An introduction to genetic algorithms, The MIT press, Cambridge, USA (1998). 
  24. S, Kirkpatrick, Optimization by simulated annealing: Quantitative studies, Journal of Statistical Physics, 34 (5) (1984) 975-986. 
  25. M. Dorigo, et al., Ant colony optimization, IEEE Computational Intelligence Magazine, 1 (4) (2006) 28-39. 
  26. N. Karaboga and B. Cetinkaya, Performance comparison of genetic and differential evolution algorithms for digital FIR filter design, Advances in Information Systems: Third International Conference, Turkey (2004) 482-488. 
  27. K. A. Loparo, Bearings vibration data set, Case Western Reserve University  
  28. L. Zhang et al., Multiscale morphology analysis and its application to fault diagnosis, Mechanical Systems and Signal Processing, 22(3) (2008) 597-610. 
  29. R. Storn and K. Price, Differential Evolution-A Simple and Efficient Heuristic for global Optimization over Continuous Spaces, Journal of Global Optimization, 11 (4) (1997) 341-359. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음


원문 PDF 다운로드

  • 원문 PDF 정보가 존재하지 않습니다.

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일